

Opportunities and Challenges of SWAT for Modelling Coastal Environmental Processes

D.D. Poudel¹ and R. Srinivasan²

¹Environmental Science Program., School of Geosciences, University of Louisiana at Lafayette, Lafayette, Louisiana, USA ²Texas A&M University, Texas, USA

International Soil and Water Assessment Tool (SWAT) Conference and Workshop September, 2024 Organized by the Pontificia Universidad Católica del Perú in collaboration with the USDA-ARS and Texas A&M AgriLife Research, USA

SWAT for Environmental Modeling

- Bayou Plaquenine Brule Watershed
- Coulee Baton Micro-watershed
- Bayou Chene Watershed
- On-going Graduate Research Projects
- Coastal Landscape
- SWAT+

Map of the United States

http://www.statemapsonline.com/images/usa/USA-State-Map-With-Rivers-And-Cities.jpg

Water Quality Assessment - Louisiana

Map courtesy: LDEQ GIS Unit, 2008

Bayou Plaquemine Brule Watershed

The Soil and Water Assessment Tool (SWAT) Model

ArcSWAT Version 2.3.3, ArcGIS 9.3 SP1

A process-based model.

Watershed-scale Water Quality Monitoring and Modeling (April 2001- June 2009)

1998 303(d) list due to not meeting EPA standards for designated uses of contact recreational uses and wildlife propagation.

The suspected causes of impairment were organic enrichment/low dissolved oxygen, and nutrients. Priority rank 1.

TMDLs for DO, fecal coliform, mercury, nutrients, TSS, and TDS were developed in in Dec. 1999 and approved by EPA in Feb. 2000.

ArcSWAT Project – Database Setup

- Digital Elevation Model (DEM), LiDAR Data –
- 5 m DEM (<u>http://atlas.lsu.edu/LiDAR</u>)
- Landuse map (LDEQ Landsat TM, 1998)
- Soils data (STATSGO 1:250,000 scale)
- Weather data (Rice Research Station, Crowley, Louisiana, 1980 to 2008)
- Daily discharge data for flow calibration and validation (<u>http://ida.water.USGS.gov/ida/available_records.cf</u> <u>m?sn=08010200</u>), June 2002 to November 2005), USGS 08010200 BYU PLAQUEMINE BRULE at CHURCH POINT, LA

Pilot basin for flow calibration and validation

Model calibration and validation

Total mass and average load observed and modeled

(May 1, 2002, to	Sediment (t)		TN (kg)		TP (kg)	
Sept. 30, 2005)	Observed	Modeled	Observed	Modeled	Observed	Modeled
Total mass	88.2	88.4	3,160.0	4,458.1	519.6	397.7
Average	1.1	1.1	45.8	64.6	7.5	5.8

Notes: TN = total nitrogen. TP = total phosphorous.

- - . .

Critical areas for sediment and nutrient loads

Poudel et al., 2013

Table 4. List of parameter values after adjustment for model calibration including flow, sediment, and nutrients. It should be noticed that ground water delay in flow parameter was very high (400 days) and this seems to be because the ground water in this area has been used up for crawfish and rice production and has not been recharging channel.

Component	Parameter (file)	Description	Input Value
Flow	CN2 (.mgt)	SCS runoff curve number (adjustment range)	-5 to -20
	ESCO (.hru)	Soil evaporation factor	0.9
	GW_DELAY (.gw)	Groundwater delay time (days)	400
	GWQMN (.gw)	Groundwater storage required for return flow (mm)	1.00
	SOL_K (.sol)	Soil hydrologic conductivity (mm/hr)	10
Sediment	LAT_SED (.hru)	Sediment concentration in lateral and ground water flow (mg/L)	10
	SPCON (.bsn)	Linear parameter for calculating the maximum amount of sediment that can be re-entrained	0.0011
	SPEXP (.bsn)	Exponent parameter for calculating sediment re-entrained	1.2
	CH_COV (.rte)	Channel cover factor	0.5
	CH_EROD (.rte)	Channel erodibility factor	0.5
Nitrogen	N_PERCO (.bsn)	Nitrogen percolation coefficient	0.9
	BC1 (.swq)	Rate constant for biological oxidation of NH4 to NO2 (/day)	0.01
	BC3 (.swq)	Rate constant for hydrolysis of organic N to NH4 (/day)	0.1
	RS3 (.swq)	Benthic source rate for NH ₄ -N	0.1
Phosphorous	PSP (.bsn)	Phosphorous availability index	0.1
	RS2 (.swq)	Benthic source rate for dissolved phosphorous	0.3
	BC4 (.swq)	Rate constant for mineralization of organic P to dissolved P	0.7

Sediment, nutrients, temperature, dissolved solids, and acidity/alkalinity are the factors responsible for the variation in surface water quality across the watershed.

Extreme rain events following long drought cause much harm than an extreme rain events after the onset of rainfalls.

 \succ Drying upstreams of water bodies is a concern.

➤ SWAT model is very useful in identifying critical areas for nonpoint source pollution control in a watershed.

Coulee Baton Microwatershed

The Coulee Baton Microwatershed is in Mermentau River Basin and drains into the LA-050702 waterbody description of GIWW from the Mermentau River to the Leland Bowman Locks.

SWAT Modeling

5 m LiDAR data for DEM 1:250,000 scale STATSGO data for soils NLCD 2001 landcover dataset for landuse map Management information Precipitation and temperature data 1980 – 2010 Abbeville and Iberia station Parameterization from Bayaou Plaquemine Brule SWAT project Hotspots based on annual loads

NLCD Classification	Schemes MRLC US EPA - Windows Internet Explorer			- 7 🛛
Solution	www. epa.gov /mrlc/classification.html		💌 🗟 🖅 🗙 🧗 nicd data	P - Q
File Edit View Favori	tes Tools Help			
Favorites	Classification Schemes MRLC US EPA		🏠 🔹 🔝 🔹 🖶 🔹 Page - Safety -	Tools 🛛 🕡 👻
		U.S. EN	VIRONMENTAL PROTECTION AGENCY	^
UNIT OF STATES	Multi-Resolution Land Characteristics Consortium (M	RLC)	Share	
	Recent Additions Contact Us Search: O All EPA O This Area			
	You are here: EPA Home » MRLC » Data » National Land Cover Data (NLCD) » NLCD Classification Schem	es		
AL PROTECT				
	NI CD Classification Schemes (Level II)			
MRLC Home				
NCLD 2001	<u>Class I and II Definitions</u>			
NCLD 1992				
NCLD Change	1992 Scheme	2001 Scheme		
NCLD 2006	11 - Open water	11 - Open water		
Publications	12 - Perennial Ice/Snow	12 - Perennial Ice/Snow		
	21 - Low Intensity Residential 22 - High Intensity Residential	21 - Developed, Open Space 22 - Developed, Low Intensity		
	23 - Commercial/Industrial/Transportation	23 - Developed, Medium Intensity		
		24 - Developed, High Intensity		
	31 - Bare Rock/Sand/Clay 32 - Ouarrige/Strip Minec/Gravel Pits	31 - Barren Land		
	33 - Transitional	S2 - Oficonsolidated Shore -		
	41 - Deciduous Forest	41 - Deciduous Forest		
	42 - Evergreen Forest 43 - Mixed Forest	42 - Evergreen Forest 43 - Mixed Forest		
	51 - Shrubland	51 - Dwarf Scrub2		
		52 - Scrub/Shrub		
	61 - Orchards/Vineyards/Other			
	71 - Grassland/Herbaceous	71 - Grassland/Herbaceous		
		72 - Sedge Herbaceous ⁴		
		73 - Lichens = 74 - Moss ²		
	81 - Pasture/Hav	81 - Pasture/Hav		
	82 - Row Crops	82 - Cultivated Crops		
	83 - Small Grains 84 - Fallow			
	85 - Urban/Recreational Grasses			
	91 - Woody Wetlands	90 - Woody Wetlands		
	92 - Emergent Herbaceous Wetlands	91 - Palustrine Forested Wetland		
		92 - Palustrine Scrub/Shrub ±		
		94 - Estuarine Scrub/Shrub ¹		
		95 - Emergent Herbaceous Wetland		
		96 - Palustrine Emergent Wetland (Persistent) ¹		
		97 - Palustrine Emergent Wetland = 98 - Palustrine Aquatic Red ¹		
		So Faldatine Aquate bed		▲ 40001
Done			🤯 Internet 🦓 🗸	₫ 100% •

🛃 start 🔗 NLCD Classification S...

^{🍓 🗞 🧶 🕕 - 3:00} PM

Table 4. List of parameter values after adjustment for model calibration including flow, sediment, and nutrients. It should be noticed that ground water delay in flow parameter was very high (400 days) and this seems to be because the ground water in this area has been used up for crawfish and rice production and has not been recharging channel.

Component	Parameter (file)	Description	Input Value
Flow	CN2 (.mgt)	SCS runoff curve number (adjustment range)	-5 to -20
	ESCO (.hru)	Soil evaporation factor	0.9
	GW_DELAY (.gw)	Groundwater delay time (days)	400
	GWQMN (.gw)	Groundwater storage required for return flow (mm)	1.00
	SOL_K (.sol)	Soil hydrologic conductivity (mm/hr)	10
Sediment	LAT_SED (.hru)	Sediment concentration in lateral and ground water flow (mg/L)	10
	SPCON (.bsn)	Linear parameter for calculating the maximum amount of sediment that can be re-entrained	0.0011
	SPEXP (.bsn)	Exponent parameter for calculating sediment re-entrained	1.2
	CH_COV (.rte)	Channel cover factor	0.5
	CH_EROD (.rte)	Channel erodibility factor	0.5
Nitrogen	N_PERCO (.bsn)	Nitrogen percolation coefficient	0.9
	BC1 (.swq)	Rate constant for biological oxidation of NH4 to NO2 (/day)	0.01
	BC3 (.swq)	Rate constant for hydrolysis of organic N to NH4 (/day)	0.1
	RS3 (.swq)	Benthic source rate for NH ₄ -N	0.1
Phosphorous	PSP (.bsn)	Phosphorous availability index	0.1
	RS2 (.swq)	Benthic source rate for dissolved phosphorous	0.3
	BC4 (.swq)	Rate constant for mineralization of organic P to dissolved P	0.7

Low < 1 mt/ha, medium 1- 5 mt/ha and high > 5 mt/ha.

>70 kg/ha

Low < 8 kg/ha, medium 8-10 kg/ha, and high > 10 kg/ha

> Drainage networks especially drainage pipes, ditches, and rice fields, were difficult to model.

➢ Water flows everywhere after a big rain event in flatlands like Coulee Baton area.

➢ It seems that microwatersheds especially in flatlands like those in Louisiana are difficult to model with the earlier version of SWAT.

Bayou Chene Watershed, Louisiana

Muir et al., 2017

0 0.5 1 2 3 4

2016 Landuse in Bayou Chene

Methods and Model Process

•Previous data collection took place at 10 sample sites on weekly intervals; discharge measured using Son Tek RiverCAT from a stationary boat

•Weekly data sampled from 2012-2017 will be used to calibrate and validate the arcSWAT model

•Discharge data is sparse and will need to be extrapolated via regression analysis

OBJECTIVES:

- Establish linkages from land use and water quality
- Find critical areas of agricultural NPS pollution within the watershed
- Rank priority management areas (PMAs) for potential improved resource allocation or cost-utility ratio

CHALLENGE:

Discharge is the key input variable for the SWAT model. The obvious error within this model stems from extrapolating or making artificial predictions in which the model will run on the extrapolation technique, not the data.

Discharge measurement

Coastal Basins of Louisiana

On-going Graduate Student's Projects:

- 1) Climate change effects on water resources in the Gulf Coast
- 2) Climate change and anthropogenic impact on coastal hydrology
- Effects of Climate Change on Soils especially on nitrogen, phosphorus and salinity levels across Louisiana Coastal Basins
- Dissolved Oxygen profiles in oyster reefs in Louisiana Coast

Extreme rain events and flooding

Tidal Influences

Source: https://www.tideschart.com/United-States/Louisiana/Plaquemines-Parish/Southwest-Pass/#google_vignette

Literatures on the application of SWAT model in understanding coastal environmental processes:

- 1) There exist a lot of publications on SWAT application in coastal environment.
- Upadhyay, P., A. Linhoss, C. Kelble, S. Ashby, N. Murphy, and P.B. Parajuli. 2022. Application of the SWAT model for coastal watersheds: Review and Recommendations, Journal of the ASABE. 65(2): 453-469. (doi: 10.13031/ja.14848) (Recommendationcoupling SWAT with a hydrodynamic model to simulate tidal influences).

SWAT+ for modelling coastal process

Watershed Configuration in SWAT+

- Improved simulation of landscape position, overland routing, and floodplain processes
- More realistic simulation of water areas

9/23/2024

SWAT+

Landscape Units

- Hydrologic landscape units are elements of a (sub)watershed that are defined to account for landscape position
- Two landscape units in SWAT+:
 - Uplands and floodplains
 - Different hydrologic properties and processes (slope, storage, sediment processes)

Landscape Unit Delineation

SWAT+

- Delineation methods:
 - a) Topographic Wetness Index (Beven and Kirkby, 1979)
 - b) Slope Position (USDA Forest Service, 1999)
 - c) Uniform Flood Stage (Williams et al., 2000)
 - d) Variable Flood Stage (Nardi et al., 2006)

Rathjens et al., 2016. Delineating floodplain and upland areas for hydrologic models - A comparison of methods. Hydrological Processes 30(23):4367-4383.

Watershed Hydrography

Representation of various types of watershed hydrography facilitated by SWAT+ connect files:

- a. Subbasin with reservoir at outlet
- b. Reservoirs spanning multiple subbasins
 - c. Playa lakes and potholes
 - d. No water features in subbasin
- e. Swamp/marsh covering entire subbasins
 - f. Unconnected drainage

Thank you for your attention.

Any questions?