SWAT Conference 8-12 July - Strasbourg, France

Enhancing water quality assessment tools for a sustainable future: Part II, surface water–groundwater simulation by the coupled SWAT+gwflow

Navas, R., Gelós, M., Alvareda, E., Manzi, M., Wlasiuk, B., Gamazo, P.

Special thanks to:

Ryan Bailey, Estifanos Addisu Yimer

Sofía da Rocha, Eliana Delave, Armando Borrero, Julián Ramos, Andrés Saracho

Outline

- Introduction
- Study area and dataset
- Model configuration
- Experiment design
- Preliminary results
- Summary

400

£ 200-

San Antonio basin (213 km²)

31.10°S-

Objective

Explore the applicability of the SWAT+gwflow model to simulate hydrological processes, including groundwater dynamics, nutrient transfers, and runoff, in the San Antonio Basin, Uruguay.

Prelimin

esults

Summar

Instrumentation and sporadic observations

Groundwater head vs lake levels & precipitation

Groundwater head

Groundwater head & lake level

Groundwater head & precipitation

Nitrates rating curve

NO3 = 0.56*Q^0.87

Model residuals (logR) $logR = log(NO3_{sim}) - log(NO3_{obs})$ logR = s(month) + s(Temperature)

Model configuration (Subbasins, HRUs, gwflow grid)

Model configuration (gwflow initial conditions)

Groundwater

Stationary - MODFLOW 2 layers 250 x 250 m (Borrero et al. 2024)

Model configuration

Aquifer thickness (Shangguan et al. 2017)

1200 random sampling (uniform distributions)

SWAT+standalone

Parameter	Component	range	change
alpha_bf	aqu	0-1	abs
cn2	cntable	0.85-1.15	rel
dep_bot	aqu	1-10	abs
dep_wt	aqu	0.1-0.9	abs*
ерсо	hydrology	0.6-1	abs
esco	hydrology	0.08-1.15	abs
flo_max	aqu	0-2	abs
flo_min	aqu	0-10	abs
gw_flo	aqu	0-2	abs
perc_crk	soil	0-1	abs
perco	hydrology	0-1	abs
rech_dp	aqu	0-1	abs
revap	aqu	0-1	abs
revap_min	aqu	0-10	abs
soil_dp1	soil	0.7-1.3	rel
soil_dp2	soil	0.7-1.3	rel
soil_k1	soil	0.7-1.3	rel
soil_k2	soil	0.7-1.3	rel
spec_yld	aqu	0.01-0.4	abs

SWAT+gwflow

	0		
Parameter	Component	range	change
cn2_A	cntable	0.85-1.15	rel
cn2_B	cntable	0.85-1.15	rel
esco	hydrology	0.08-1.15	abs
hcond_A	gwflow.ini	0.5-25	abs
hcond_B	gwflow.ini	0.5-26	abs
latq_co_A	hydrology	0.01-1	abs
latq_co_B	hydrology	0.01-1	abs
perc_crk	soil	0-1	abs
perco_A	hydrology	0-1	abs
perco_B	hydrology	0-1	abs
soil_dp1	soil	0.7-1.3	rel
soil_dp2	soil	0.7-1.3	rel
soil_k1	soil	0.7-1.3	rel
soil_k2	soil	0.7-1.3	rel
surq_lag	parameters.bsn	1-24	abs
syield	gwflow.ini	0.1-0.35	abs

Baseflow separation (Lyne-Hollick)

General Sensitivity Analysis | KGE(baseflow and totalflow)

SWAT+standalone

Model performance

Streamflow simulations Q107

37 -

Summary

Groundwater observations and simulations

Nitrates concentrations (groundwater)

Annual average 2021

Summar

Nitrate loads (surface)

Summary

- Enhanced accuracy in predicting the baseflow component of streamflow.
- More precise estimation of nitrate rating curves.
- Results inform the optimal timing and location for sampling campaigns.

Next steps

- Include groundwater pumping for irrigation
- Incorporate total phosphorus (PT), total suspended solids (TSS).
- Integrate data derived from modflow.
- Calibration and scenario modelling.

Gracias - Thank you - Merci - Danke - Grazie - Obrigado - 谢谢 -- ありがとう - 감사합니다 - Спасибо - شكر - धन्यवाद - תודה -Теşekkürler - Еυχαριστώ - Dank u - Tack - Dziękuję - Köszönöm - Cảm ơn - Tak - Kiitos - Ačiū - Aitäh - Děkuji - Paldies -Blagodaria - Hvala - Spasiba - Hvala vam - Takk - Grazzi - Takk fyrir - Paldies - Dėkoju - Dzięki - Mulţumesc - Благодаря -Спасибі - Хвала - Ďakujem - Hvala - Tack så mycket - Ďakujem - Hvala lepa - Dhanyavaad - Mahalo

Rafael Navas

rafaelnavas23@gmail.com