

Analysis of simplified HRU configurations for the evaluation of water yield improvement projects in mountain ecosystems

Ciprian Laura , Albert Mamani, Syntia Huisa, Tatiana Boza

National Institute for Research on Glaciers and Mountain Ecosystems (INAIGEM)

Shullcas watershed

Shullcas area	250.4km2		
Study area	59.49 km2		
Elevation	3193 – 5475 m s.n.m.		
Glacier area	3.7 km2		
Lake area	1.6 km2		
Wetland area	27.9 km2		
river length	35.2 km		
Discharge	2.41 m3/s		
Precipitation	1060 mm/year		

Study Area

Vegetation parameters assigned based in previous Peruvian studies: LAI_MIN, BLAI, T_OPT.

WATR	Lake, Glacier		
BSVG	Periglacial zone		
GRAS	Grassland		
WETN	High Andean		
	wetlands		

Methodology

528.5

109.7

4.7

30.3

14.9

NAIGEM

INSTITUTO NACIONAL DE INVESTIGACIÓN EN GLACIARES

🖢 A Ñ O S 🛛 ECOSISTEMAS DE MONTAÑA

1. Application of Land Cover Threshold (20%)			Application of Soil Threshold (10%)							
		Percentage					Area after Land	Percentage		
Land	Area	of Sub-	Qualifies	Result			Cover Threshold	of Land	Qualifies	Result
Cover	(ha)	Watershed	as HRU?	(ha)		Soil	(ha)	Cover	as HRU?	(ha)
Cropland 200 50%	F0%	Vee	244		Soil 1 (C-1)	19.5	8.0%	No	0	
	res	244		Soil 2 (C-2)	224.5	92.0%	Yes	244.0		
Forest 128 32% Yes	Vee	150		Soil 1 (F-1)	19.5	12.5%	Yes	19.5		
	120	D 3270	res	100		Soil 2 (F-2)	136.5	87.5%	Yes	136.5
Urban	72	18%	No	0		Urban land reapportioned to cropland and forest				

PERÚ Ministerio del Ambiente

Subbasins	11
FULL HRU	444

Names	Representation	Landuse	Soil	Slope	HRUs
FULL	Complete	34%	90%	40%	444
18L_0S_13P	No wetlands	18%	0%	13%	279
DOMINANCIA	Dominace				78
0L_0S_40P	No slope	0%	0%	40%	208
Land_Soil_Slo pe	Dominance land, soil or slope				78
34L_0S_0P	No Landuses	34%	0%	0%	314
0L_90S_0P	No soil	0%	90%	0%	388
2L_90S_40P	Best configuration	2%	90%	40%	153

18L_OS_13P

Land_soil_slope

2L_90S_40P

0L_0S_40P

Results

Main diferences of flows by HRU configuration					
HRU configuration	Surface runoff mm/year	Plant ET mm/year	Soil ET mm/year		
FULL	142.1	14.7	639.5		
18L_0S_13P	114.9	12.0	650.8		
DOMINANCIA	105.6	12.0	655.0		
0L_0S_40P	142.3	14.8	639.9		
Land_Soil_Slope	82.8	8.5	663.9		
34L_0S_0P	77.7	8.2	666.9		
0L_90S_0P	141.8	14.6	639.6		
2L_90S_40P	140.7	14.7	640.5		

surface_runoff

Probabilidad

Calibration

Non glacier influence

Conclusions and next steps

- Properly representation of landuse allows a better evaluation of investment projects based on interventions on ecosystems.
- The best configuration identified in this work is 2L_95S_40P, because it reduces the number of HRUs necessary for the evaluation of the interventions.
- The fluxes with the significant variation due to the different HRU configurations are Surface runoff, plant ET and soil ET.
- A good calibration was obtained in the area without glacial contribution (NSE=0.79). However, the area with glacial contribution requires further analysis.
- ✤ Add the glacier and reservoir components to improve model calibration.
- Improve the soil map with field measurements.
- ✤ Link model results to a decision support system.

Ciprian Laura Oscco

10023201891@unajma.edu.pe

