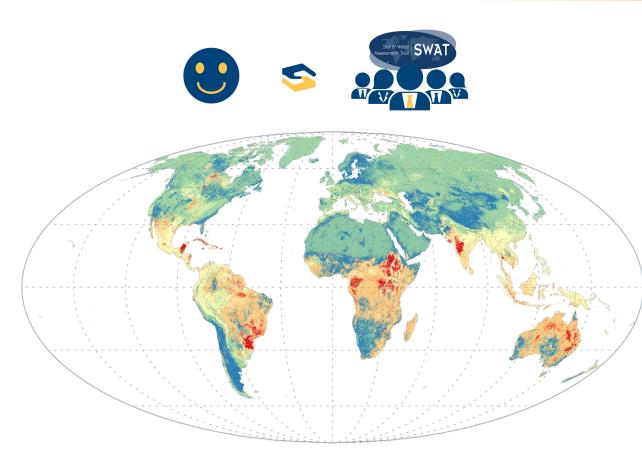
Developing a high-resolution global digital soil map for enhanced hydrological modeling with the SWAT+ model

International Soil and Water Assessment Tool (SWAT) Conference 26-30 June 2023

Aarhus University, Department of Ecoscience, Denmark.

<u>Adrián López-Ballesteros</u>, Anders Nielsen, Gerardo Castellanos-Osorio, Dennis Trolle, Javier Senent-Aparicio.

> PhD in Computer Technology and Environmental Engineering. Catholic University of Murcia (Spain).



What are we offering?

DSOLMap:

- > New soil map for SWAT+.
- Global scale.
- > Spatial resolution 250 m.
- > 6 soil horizons (up to 2 m).
- > For free.

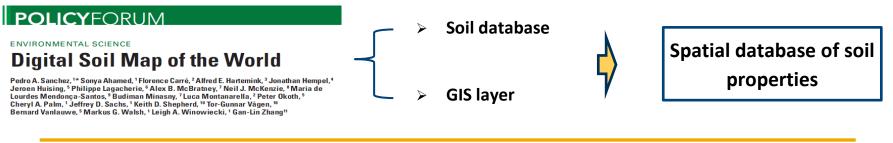
INDEX

> INTRODUCTION

- Digital Soil Open Land Map (DSOLMap)
- o DSOLMap flowchart

> METHODOLOGY

- \circ STEP 1
- o STEP 2
- o STEP 3
- o STEP 4


> RESULTS

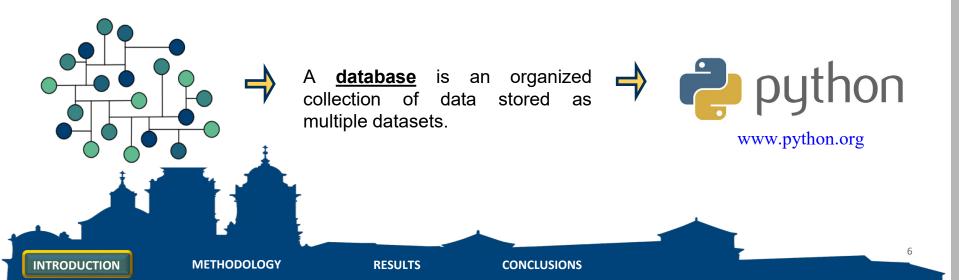
CONCLUSIONS

INTRODUCTION

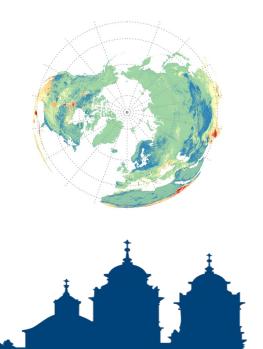
.....

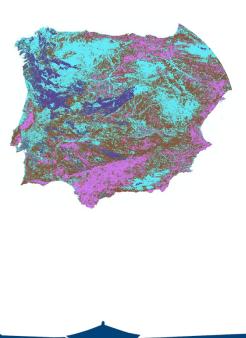
Sanchez et al. (2009)

A B C 2 130 score 0 3 0 score 0 4 130 score 0 5 130 score 0 6 130 score 0 6 130 score 0 7 130 score 0 8 130 score 0 9 130 score 0 10 130 score 0 10 130 score 0 10 137 score 0 10 137 score 0 10 130 score 0 10	D E F 10 60 CMPC 10 CMPC CMPC 1	$\begin{array}{cccccc} 0 & 0 & 0 \\ \hline 0 & 10 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	0 0.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+
INTRODUCTIO	ON	ME	THODOLOGY	RESULTS	CONCLUSIONS

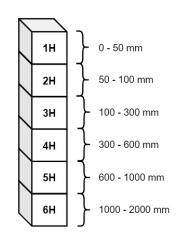

Dataset vs Database:

A <u>dataset</u> is a collection of data generally associated with a unique work.


www.openlandmap.org

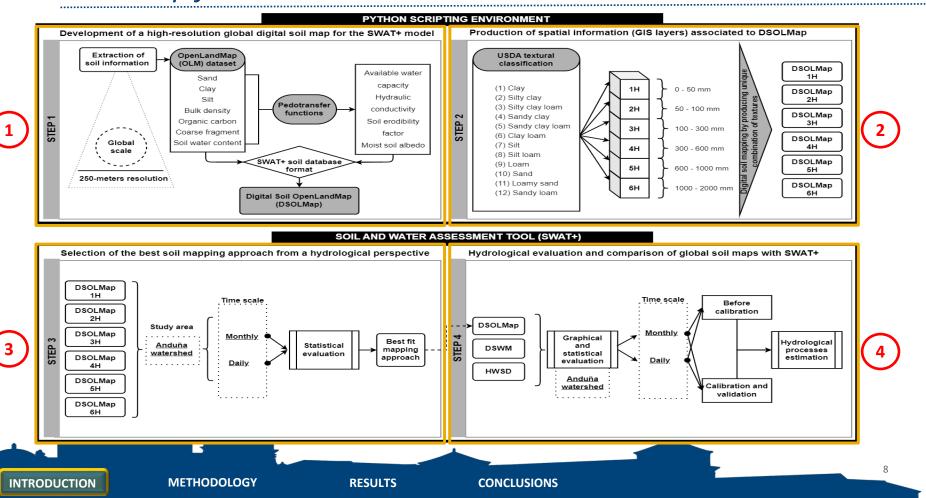

Main features:

INTRODUCTION


Global scale

250-m resolution

✓ 6 soil horizons

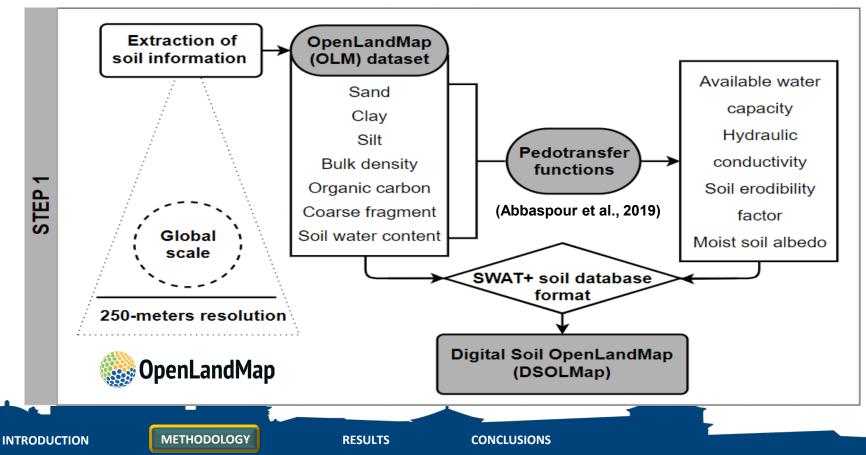


METHODOLOGY

RESULTS

CONCLUSIONS

DSOLMap flowchart



UCAM

METHODOLOGY

10

Development a global soil database for the SWAT+ model

OpenLandMap ⊨

www.openlandmap.org

An open-access web-GIS system for global environmental layers created and hosted by the OpenGeoHub foundation.

www.opengeohub.org

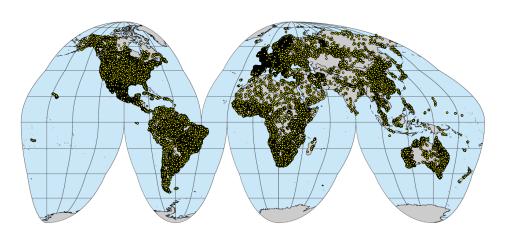
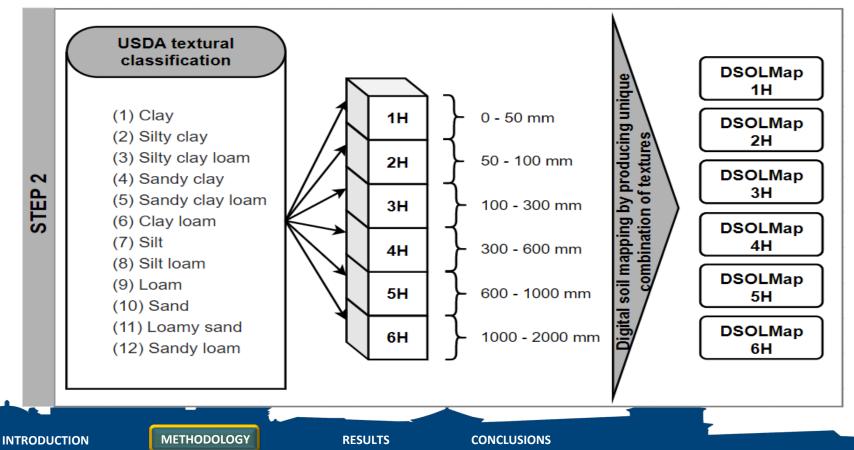


 Table 1. Main national and international soil point data sources.

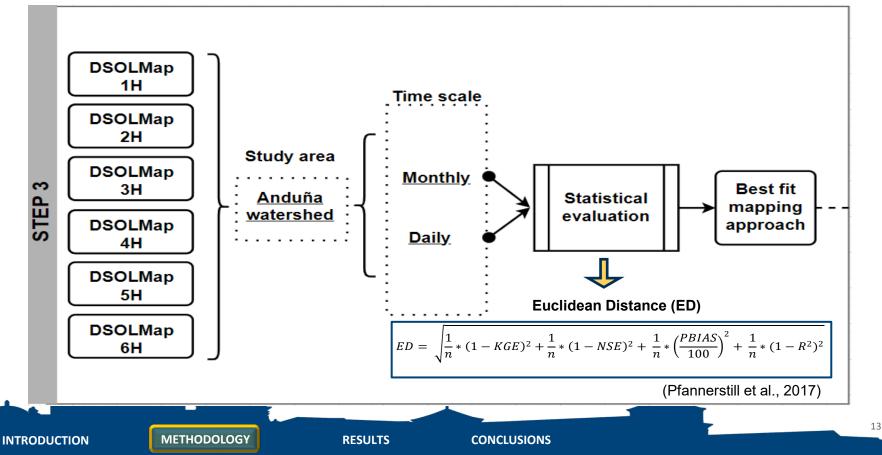
Source	Acronym	Reference
US Government National	NSCD	https://ncsslabdatamart.sc.egov.usda.gov
Cooperative Soil		
Characterization Database		
Africa Soil Profiles Database	AfSP	https://www.isric.org/projects/africa-
		soil-profiles-database-afsp
Land Use/Cover Area Frame	LUCAS	https://esdac.jrc.ec.europa.eu/resource-
Statistical Survey Soil database		type/soil-point-data
Repositório Brasileiro Livre para	FEBR	https://www.pedometria.org/febr/
Dados Abertos do Solo		
The Northern Circumpolar Soil	NCSCD	https://bolin.su.se/data/ncscd/
Carbon Database		
World Soil Information Service	WoSIS	https://www.isric.org/explore/wosis
Soil Profile Database		

- Global soil layers.
- > 3D (longitude, latitude, depth) machine learning predictions.
- >350,000 soil observations.

INTRODUCTION


METHODOLOGY

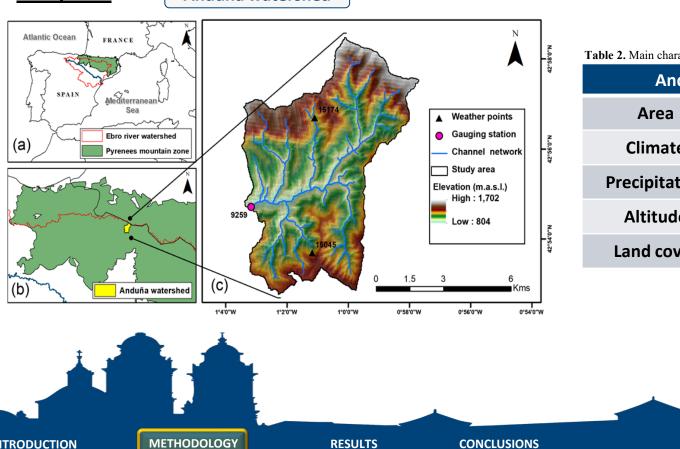
RESULTS


CONCLUSIONS

12

Production of spatial information (GIS layers) associated to DSOLMap

Selection of the best soil mapping approach from a hydrological point of view



STEP 3

٠ Study area

INTRODUCTION

Anduña watershed

Table 2. Main characteristics of the Anduña watershed.							
Anduña watershed							
Area	47 km ²						
Climate	Oceanic						
Precipitation	1,740 mm/year						
Altitude	1,129 m.a.s.l						
Land cover	~80% forest						

15

Hydrological evaluation and comparison of DSOLMap with other global soil maps

RESULTS

STEP 1: Development a global soil database for the SWAT+ model

A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V
OBJECT	-	SEQN	SNAM	SSID	CMPPCT	NLAYERS	HYDGRP	SOL_ZMX	ANION_EXCL S		TEXTURE	SOL_Z1	SOL_BD1	SOL_AWC1		SOL_CBN1		SILT1	SAND1	ROCK1	SOL_ALB1
	156 xxx		0 DSOLMap_156			0	6 D	2000			WIT_texture		50 1.2								
	157 xxx		0 DSOLMap_157			0	6 D	2000			WIT_texture		50 1.3								
	158 xxx		0 DSOLMap_158			0	6 D	2000			WIT_texture		50 1.3								
	159 xxx		0 DSOLMap_159			0	6 D	2000			WIT_texture		50 1.4								
	160 xxx		0 DSOLMap_160			0	6 D	2000			WIT_texture		50 1.2								
	161 xxx		0 DSOLMap_161			0	6 D	2000			WIT_texture		50 1.2								
	164 xxx		0 DSOLMap_164			0	6 D	2000			WIT_texture		50 1.								
	168 xxx		0 DSOLMap_168			0	6 D	2000			WIT_texture		50 1.								
	169 xxx		0 DSOLMap_169			0	6 D	2000			WIT_texture		50 1.3								
	170 xxx		0 DSOLMap_170			0	6 D	2000			WIT_texture		50 1.4								
	171 xxx		0 DSOLMap_171			0	6 D	2000			WIT_texture		50 1.4								
	172 xxx		0 DSOLMap_172			0	6 D	2000			WIT_texture		50 1								
	173 xxx		0 DSOLMap_173			0	6 D	2000			WIT_texture		50 1.								
	180 xxx		0 DSOLMap_180	XXX		0	6 D	2000		0.5	WIT_texture		50 1.4								
	181 xxx		0 DSOLMap_181	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.0	05 0.1	9 11.2	2 2.5	5 40	3	9 2	1 6	5 0.2
	192 xxx		0 DSOLMap_192	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.2	0.12	5 18.13	2 1.236	5 45.44	9.0			
	193 xxx		0 DSOLMap_193	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.4	2 0.0535	3 8.62	5 0.1471	45.75	9.1	2 4	5 13.234	0.20
	195 xxx		0 DSOLMap_195	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.4	0.0547	B 7.74	4 0.1428	46.28	8.4			
	205 xxx		0 DSOLMap_205	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.0	51 0.1	4 10.6	1 0.5	5 40	1	7 4	3 7	0.20
	208 xxx		0 DSOLMap_208	XXX		0	6 C	2000	0.5	0.5	WIT_texture		50 1.4	18 0.11	5 9.164	4 0.25	5 40.5	15.	5 43.	5 21	0.20
	216 xxx		0 DSOLMap_216	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.2	0.148	1 14.8	7 2.566	5 40	23.0	3 37.	6.31	0.2
	217 xxx		0 DSOLMap_217	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.2	0.140	6 15.3	6 3.117	7 40	21.4	4 38.8	6.94	0.2
	218 xxx		0 DSOLMap_218	XXX		0	6 C	2000	0.5	0.5	WIT_texture		50 1.3	0.166	7 6.9	3 3.777	40.22	38.8	8 21.2	5.555	0.20
	220 xxx		0 DSOLMap_220	XXX		0	6 C	2000	0.5	0.5	WIT_texture		50 0	.9 0.172	5 19.14	4 4.625	40.25	20.2	5 39.7	5 11.25	0.20
	221 xxx		0 DSOLMap_221	XXX		0	6 C	2000	0.5	0.5	WIT_texture		50 1.2	0.152	3 12.3	5 2.639	40.03	24.	5 35.8	4 10.016	0.20
	223 xxx		0 DSOLMap_223	XXX		0	6 C	2000	0.5	0.5	WIT_texture		50 1.14	0.205	9.16	4 3.75	5 41.5	34.	5 24.	5 3.5	0.2
	224 xxx		0 DSOLMap_224	XXX		0	6 C	2000	0.5	0.5	WIT_texture		50 1.4	0.09	5 6.3	7 1.5	5 40	3	3 2	7 8.5	0.20
	301 xxx		0 DSOLMap_301	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.3	0.121	3 17.3	3 1.73	40.3	14.05	5 45.	6.19	0.2
	302 xxx		0 DSOLMap_302	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.3	0.146	7 13.20	8 4.805	40.8	23.4	5 35.	6.18	0.20
	303 xxx		0 DSOLMap_303	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.4	0.168	1 6.09	8 2.332	40.6	40.0	3 19.7.	2 5	0.20
	304 xxx		0 DSOLMap_304	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.4	0.083	9 12.2	5 0.6704	42.56	9.7.	47.7	5 10.65	0.20
	305 xxx		0 DSOLMap_305	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.	32 0.1	1 17.6	7 0.5	5 40	1	5 4	5 13	0.20
	306 xxx		0 DSOLMap_306	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.2	0.136	6 17.3	1 2.584	38.56	19.	8 41.9	6.758	0.20
	313 xxx		0 DSOLMap 313	XXX		0	6 D	2000	0.5	0.5	WIT texture		50 1.2	0.128	2 23.	1 1.914	37.72	14.1	48.1	2 5.44	0.20
	314 xxx		0 DSOLMap 314	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.3	0.1116	3 23.9	9 1.66	5 36.25	13.91	49.8	B 5.75	0.205
	315 xxx		0 DSOLMap 315			0	6 D	2000	0.5		WIT texture		50 1.3	0.167	4 6.38	7 2.154	40.3	43.	7 16.1	5.2	
	316 xxx		0 DSOLMap_316	XXX		0	6 D	2000	0.5	0.5	WIT_texture		50 1.	0.14	1 28.3	9 1.876	5 37.62	9.16	53.2	5.684	0.208
	317 xxx		0 DSOLMap 317			0	6 D	2000	0.5		WIT_texture		50 1.2	64 0.130	7 26.7	5 4.637	7 30.33	20.8	5 49.2	8 11.28	0.21
	318 xxx		0 DSOLMap 318			0	6 D	2000			WIT texture		50 1.2								
	320 xxx		0 DSOLMap 320			0	6 D	2000			WIT texture		50 1.								
	321 xxx		0 DSOLMap 321			0	6 D	2000			WIT texture		50 1.1								
	324 xxx		0 DSOLMap_324			0	6 D	2000			WIT texture		50 1.0								
	325 101		0 DSOLMap_324			0	6.0	2000			WIT texture		50 1.0								
()		ANDMAPsoi	database (4										1.4								

Table 3. SWAT+ required soil properties

Parameter	Description	Units
NLY	Number of soil horizons within soil profile	-
ZMX	Maximum rooting depth of soil profile	mm
Z^1	Depth from surface to bottom of soil horizon	mm
BD^1	Soil bulk density	g/cm ³
AWC^1	Available water capacity	mm/mm
\mathbf{K}^1	Saturated hydraulic conductivity	mm/hr
CBN ¹	Organic carbon content	% of soil weight
CLAY ¹	Clay fraction	% of soil weight
SILT ¹	Silt fraction	% of soil weight
SAND ¹	Sand fraction	% of soil weight
ROCK ¹	Coarse fragment content	% of total weight
ALB	Moist soil albedo of topsoil horizon	-
USLE_K	Soil erodibility factor of topsoil horizon	cm/day

¹Values per soil horizon

INTRODUCTION

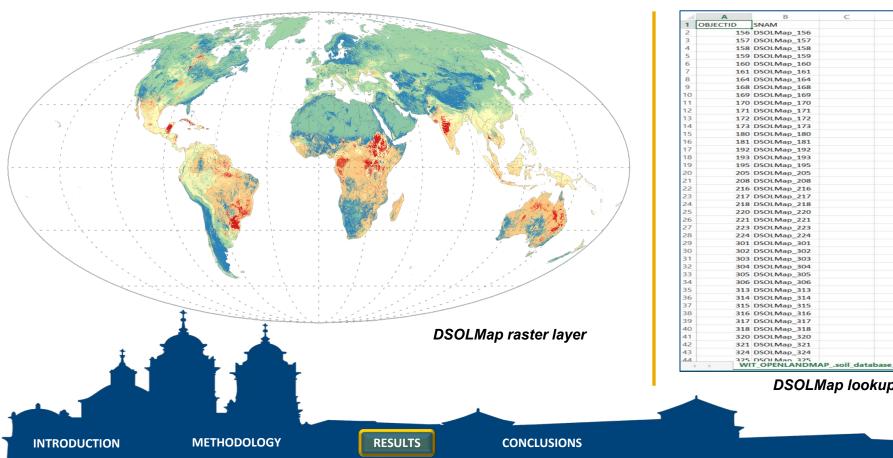
METHODOLOGY

RESULTS

CONCLUSIONS

D

.....


C

DSOLMap lookup table

18

B

STEP 2: Production of spatial information (GIS layers) associated to DSOLMap

STEP 3: Selection of the best soil mapping approach from a hydrological point of view

RESULTS

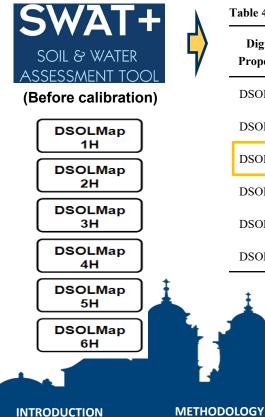



Table 4. Number of SMUs and statistical indices obtained in the Anduña watershed

	Digital Soil			Daily					Monthly					
	Property Map	SMU	HRUs	KGE	NSE	PBIAS	R ²	ED	KGE	NSE	PBIAS	R ²	ED	
	DSOLMap 1H	2	857	0.54	0.01	-0.34	0.41	0.620	0.88	0.78	-0.93	0.8	0.16	
	DSOLMap 2H	4	1166	0.54	0.01	-0.37	0.41	0.620	0.87	0.78	-0.95	0.8	0.16	
ſ	DSOLMap 3H	5	1335	0.53	-0.02	-0.27	0.41	0.634	0.87	0.78	-0.86	0.81	0.15	
	DSOLMap 4H	6	1414	0.53	-0.03	-0.26	0.41	0.638	0.87	0.78	-0.85	0.81	0.15	
	DSOLMap 5H	9	1484	0.52	-0.03	-0.26	0.41	0.640	0.87	0.78	-0.85	0.81	0.15	
	DSOLMap 6H	12	1535	0.52	-0.03	-0.26	0.41	0.640	0.87	0.78	-0.85	0.81	0.15	
	ŧ					_	_	_						
	Ċ.					_								
						DS	SOLMa 3H	ар						
	The second se													

CONCLUSIONS

.

.....

INTRODUCTION

Soil suplementary information

A	B	C	D	E	F	G	н
SoilID	TextureID	Order	Suborder	Group	Horizon_1	Horizon_2	Horizon_3
156	11010101	Vertisols	Usterts	chromusterts	clay	clay	clay
157	11010102	Inceptisols	Ochrepts	xerochrepts	clay	clay	silty clay
158	11010103	Inceptisols	Ochrepts	xerochrepts	clay	clay	silty clay loam
159	11010104	Entisols	Psamments	torripsamments	clay	clay	sandy clay
160	11010105	Mollisols	Ustolls	haplustolls	clay	clay	sandy clay loan
161	11010106	Vertisols	Usterts	chromusterts	clay	clay	clay loam
164	11010109	Alfisols	Udalfs	hapludalfs	clay	clay	loam
168	11010201	Ultisols	Udults	paleudults	clay	silty clay	clay
169	11010202	Inceptisols	Ochrepts	cryochrepts	clay	silty clay	silty clay
170	11010203	Inceptisols	Ochrepts	xerochrepts	clay	silty clay	silty clay loam
171	11010204	Entisols	Psamments	torripsamments	clay	silty clay	sandy clay
172	11010205	Mollisols	Ustolls	haplustolls	clay	silty clay	sandy clay loan
173	11010206	Inceptisols	Ochrepts	xerochrepts	clay	silty clay	clay loam
180	11010301	Mollisols	Aquolls	calciaquolls	clay	silty clay loam	clay
181	11010302	Entisols	Aquents	fluvaquents	clay	silty clay loam	silty clay
192	11010401	Oxisols	Orthox	haplorthox	clay	sandy clay	clay
193	11010402	Entisols	Psamments	torripsamments	clay	sandy clay	silty clay
195	11010404	Entisols	Psamments	torripsamments	clay	sandy clay	sandy clay
205	11010502	Vertisols	Usterts	chromusterts	clay	sandy clay loam	silty clay
208	11010505	Aridisols	Calcids	petrocalcids	clay	sandy clay loam	sandy clay loan
216	11010601	Vertisols	Usterts	chromusterts	clay	clay loam	clay
217	11010602	Oxisols	Ustox	acrustox	clay	clay loam	silty clay
218	11010603	Alfisols	Udalfs	hapludalfs	clay	clay loam	silty clay loam
220	11010605	Mollisols	Ustolls	haplustolls	clay	clay loam	sandy clay loan
221	11010606	Vertisols	Usterts	chromusterts	clay	clay loam	clay loam
223	11010608	Spodosols	Orthods	haplorthods	clay	clay loam	silt loam
224	11010609	Mollisols	Udolls	hapludolls	clay	clay loam	loam
301	11020101	Oxisols	Orthox	haplorthox	silty clay	clay	clay
302	11020102	Entisols	Fluvents	torrifluvents	silty clay	clay	silty clay
303		Inceptisols	Ochrepts	xerochrepts	silty clay	clay	silty clay loam
304	11020104	Vertisols	Xererts	chromoxererts	silty clay	clay	sandy clay
305	11020105	Entisols	Orthents	torriorthents	silty clay	clay	sandy clay loan
306	11020106	Entisols	Fluvents	torrifluvents	silty clay	clay	clay loam
313	11020201	Oxisols	Orthox	haplorthox	silty clay	silty clay	clay
314	11020202	Oxisols	Orthox	haplorthox	silty clay	silty clay	silty clay
315		Inceptisols	Ochrepts	xerochrepts	silty clay	silty clay	silty clay loam
316	11020204		Orthox	haplorthox	silty clay	silty clay	sandy clay
317	11020205	Inceptisols	Ochrepts	cryochrepts	silty clay	silty clay	sandy clay loan
318	11020206		Ustox	acrustox	silty clay	silty clay	clay loam
320	11020208		Orthox	haplorthox	silty clay	silty clay	silt loam
321		Inceptisols	Ochrepts	cryochrepts	silty clay	silty clay	loam
324		Inceptisols	Ochrepts	cryochrepts	silty clay	silty clay	sandy loam
325	11020301		Aquerts	eniaquerts	silty clay	silty clay loam	clay

taxonomy

USDA texture classes

How to download:

ABOUT

CONTACT US

How to download: Www.wateritech.com

Soil maps

Local soil properties can greatly influence the hydrology of a watershed. Complex hydrological models such as SWAT+ therefore also requires a large set of soil parameters to be able to simulate accurately the hydrology of a watershed. Parameterizing different soil types is often a cumbersome and difficult process that often requires application of a range of pedo-transfer functions, which can translate soil textural properties into the soil parameters needed by the model.

While the SWAT- model comes with a global soil dataset, more detailed datasets are available, which could improve the performance of the model. We utilized the review of pedo-transfer functions by Abbaspour et al. 2019 (doi/org/10.1038/s41597-019-0282-4), and derived all the required soil parameters in SWAT+ format using the median output value for a range of different pedo-transfer functions available for a given soil parameter. These unique datasets will provide you with a good basis for your model application, no matter where you are in the world.

The SWAT- hydrological model requires four key data sources for its application (digital tap, soil map, land cover map and weathy; data), and the GOTM-WET lake bit model requires minimum two data sources (hysosograph and weather its page, you can learn how to get use data from free globally available hich will allow you to set use a model from scratch, for any location in the

Data resources

.....

SERVICES PROJECTS

RESOURCES

Data

Training Brochures

CONTACT US

ave also produced a sines of video tutorials, available on our training page, anstrate how your avy process these global datasets by a series of GIS leg, clipping data for your area of interest), so that they can be applied in model.

and the second

Openland soil map OpenLand Map is a global (except Antartica) soil map derived from machine learning methods and hundreds of thousands soil profile observations. The raster resolution is 250m and the map includes six soil layers. Soil properties needed for the SWAT+ soil database were derived by Water/Tech in collaboration with UCAM using a wide range of pedotransfer functions.

The Digital SoiL OpenLand Map (DSOLMap) can be downloaded right here.

Soil Map (zipped raster, 725 MB)	Downlos
Soil database (SWAT+ format, o.2 MB)	Downlos

Soil lookup table (SWAT+ format, 0.1 MB) Download

Soil taxonomy (Supplementary information, 0.1 MB) Download

INTRODUCTION

METHODOLOGY

RESULTS

CONCLUSIONS

How to cite:

How to cite:

<u>López-Ballesteros, A</u>.; Nielsen, A.; Castellanos-Osorio, G.; Trolle, D.; Senent-Aparicio, J. (2023). **DSOLMap, a novel high-resolution global digital soil property map for the SWAT + model: Development and hydrological evaluation**. Catena, 231, 107339.

https://doi.org/10.1016/j.catena.2023.107339

Catena 231 (2023) 107339

DSOLMap, a novel high-resolution global digital soil property map for the SWAT + model: Development and hydrological evaluation

Adrián López-Ballesteros^{a,*}, Anders Nielsen^b, Gerardo Castellanos-Osorio^a, Dennis Trolle^b, Javier Senent-Aparicio^a

^a Department of Civil Engineering, Catholic University of San Antonio, Campus de Los Jeronimos s/n, 30107 Guadalupe, Murcia, Spain ^b WaterTech, Krakesrej 53, 8660 Skanderbarg, Denmark

I ICAM

.....

CONCLUSIONS

- A new global digital soil map with a spatial resolution of 250 m and a six-horizons soil profile is provided for direct use with the SWAT+ model.
- ✓ The DSOLMap represents a step forward in hydrological modelling worldwide, especially for regions where soil information is scarce or limited.
- The DSOLMap is available in open access to encourage hydrological modellers to further explore its capabilities in depth.

Ø

THANKS FOR YOUR ATTENTION

"Strive not to be successful, but rather to be useful" Albert Einstein (1879 - 1955)

