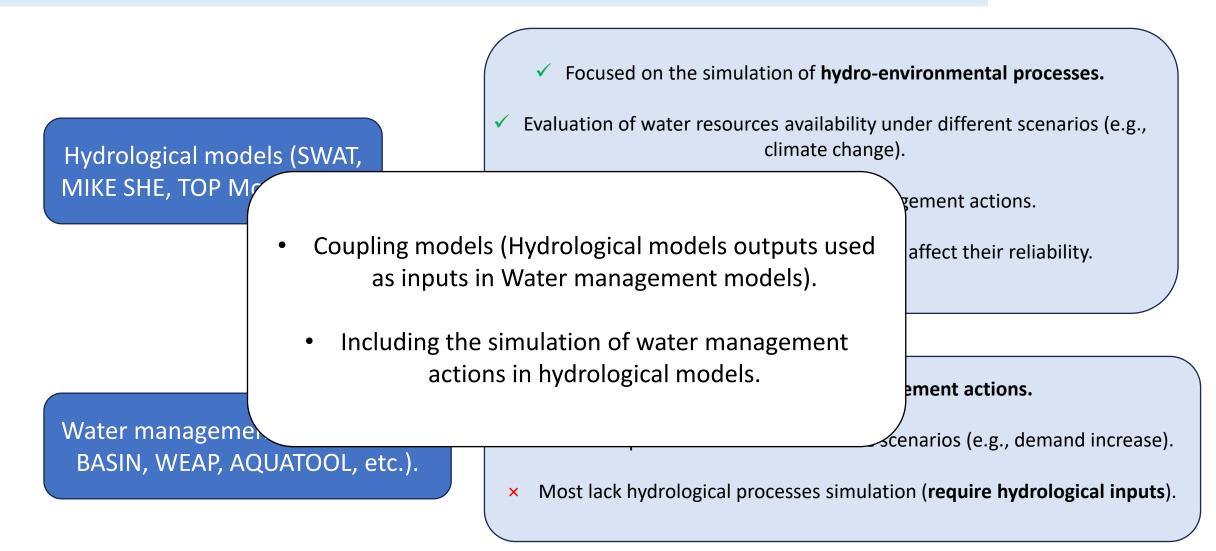


Simulating water management using SWAT+: Application of the water allocation module and reservoirs release decision tables in a highly managed catchment.

Sánchez-Gómez, A.¹, Arnold, J.², Bieger, K.³, Sammons, N.^{2,4}, Čerkasova, N.⁴, Martínez Pérez, S.¹, Molina Navarro, E.¹

¹Department of Geology, Geography and Environment, University of Alcalá (UAH), Spain. ²Grassland Soil and Water Research Laboratory, Agricultural Research Service (ARS-USDA), USA. ³Ecoscience Department, Aarhus University, Denmark.


⁴ Blackland Research & Extension Center, Texas A&M Agrilife, USA.

SWAT International Conference, Strasbourg. July 10th 2024.

Introduction: The gap between hydrological and water management models

Introduction: Simulation of management actions in SWAT+

Configuration of management actions in SWAT+

Water allocation module

Allow to cont	igure m a	anagement	a <mark>ctions (</mark> irrigati	ion, col	NDITIONS				ALT	ERNATIVES
water mover	•	, ,	٦٤ .	DTL FILES IN S	SWAT+	k	ATION	ACT		EXECUTION
combined in Exampl 1		IVES.	(ir	ile \rightarrow Land use rigation, harve dtl file \rightarrow Rese	est, etc.).	-				
name ex_rel var month month vol vol	_table obj null null res res	conds alt 4 5 obj_num 0 0 0 0 0	flo_con.dtl f	file → Water n Insfers, irrigatio	novements		alt3 - > < -	alt4 _ _ > _	alt5 - - >	
act_ty releas releas releas releas	e res e res e res	obj_num 0 0 0 0	name summer_rate winter_rlse full_rlse emerg_rlse	option rate inflo_frac days ab_emer	const 0.10000 0.15000 5.00000 0.00000	const2 0.00000 0.00000 0.00000 0.00000) null) pvol	outco y n n n y y n n n n n n	n n n n y n	

Introduction: Simulation of management actions in SWAT+

Configuration of management actions in SWAT+

Decision tables

Water allocation module

- Allow to allocate water between SWAT+ objects.
- Utilities: water transfers among reservois, allocation of water for human consumption, interbasin water transfers, irrigation, etc.
- Specific input file → water_allocation.wro → Composed by water allocation tables.

SIMULATED MANAGEMENT ACTIONS

Reservoirs release (DT) Irrigation (DT + WRO) Water transfers (DT + WRO)

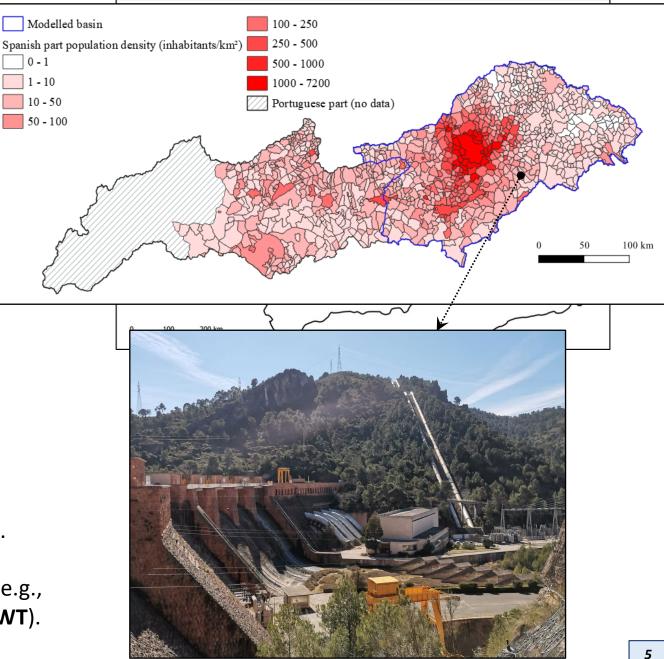
HA_DB SEP MIN OCT MIN DEC MIN 0.01 a a1 01 0.01 0.01 0.01 0.01 0.01 0.01 SRCS RCV NUM RCV DTL COMP1 null 0 null n 0 null n 0 null n 0 null 1 2 1 n 0 null 1 2 n

SOURCES MINIMUM WATER AVAILABILITY IN SOURCES

DEMAND OBJECTS

WATER TRANSFER DETAILS (conditions*, amount)

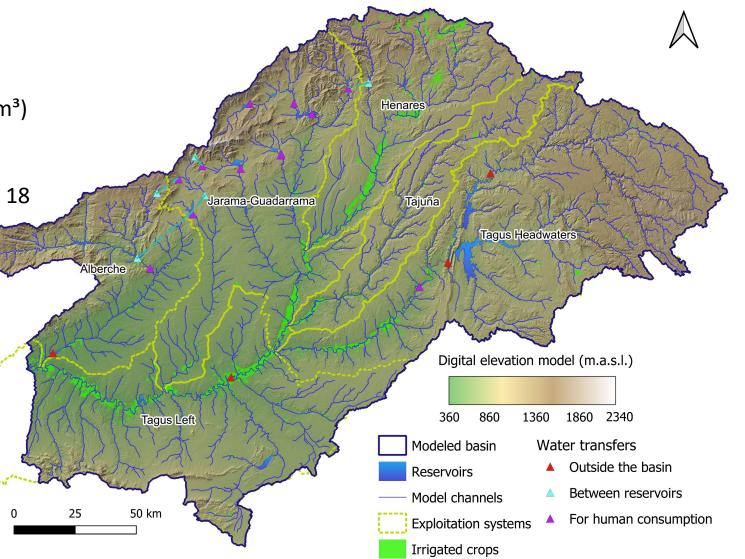
* Created using decision tables → lum.dtl / flo_con.dtl file


Study area: The Tagus River Basin

The Tagus River Basin:

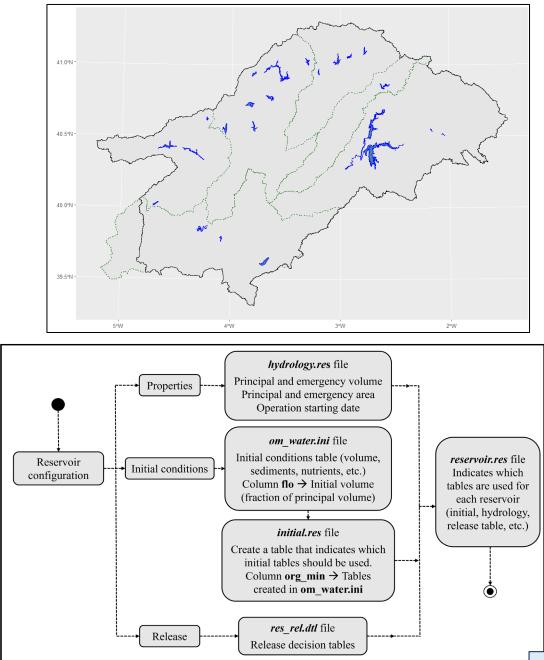
- Longest river in the Iberian Peninsula, third largest basin.
- Most populated basin in the Iberian Peninsula (around 14 million people depend on its water resources).

The Upper Tagus River Basin (UTRB)

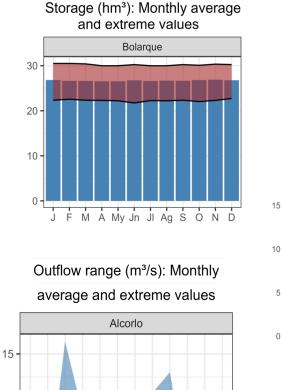

- Most relevant sector considering water resources management:
 - Largest renewable water resources.
 - Most populated area (< 7.5 million inhabitants).
 - Major part of demans/pressures located here (e.g., Madrid city or Tagus-Segura Water Transfer, TSWT).

Study area: The Upper Tagus River Basin

Water management in the UTRB:


- More than 65 reservoirs in the UTRB (4,465 hm³)
 → 31 introduced to the model (4,373 hm³).
- Numerous water transfers in the URTB (34) → 18 introduced to the model (1,100 hm³):
 - Outside the basin (437 + 18 hm³).
 - Between reservoirs (120 hm³).
 - For human consumption (544 hm³).
- Wastewater treatment plants (WWTPs) and other discharge points → More than 1,200.

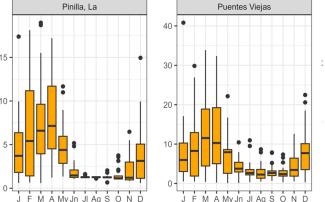
- Simulate with SWAT+ the management of water resources of the UTRB: Reservoirs, Irrigation and Water transfers.
 - \checkmark Analyse water resources management in the UTRB.
 - Explore the capabilities of the decision tables applied to reservoirs and of the water allocation module.
- ✓ Evaluate the implementation of management simulation.



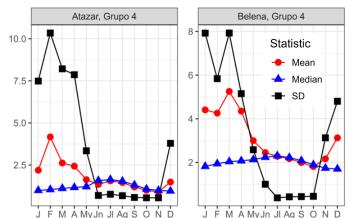
- <u>Step 1</u>: Introduction to the model → 31 reservoirs introduced.
- <u>Step 2:</u> Adapting Properties and Initial conditions \rightarrow
 - Principal and emergency volume adapted to real values in *hydrology.res* file.
 - Initial volume adapted to the observed value at the beggining of the simulation:
 - Definition of tables in *om_water.ini* file (from 20% to 90% of volume fraction).
 - Definition of tables in *initial.res* (one for each om_water table).
 - Using created tables in *reservoir.res* file.

Reservoirs simulation:

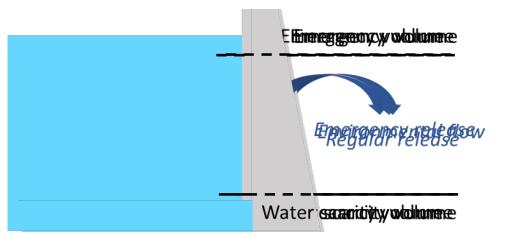
- <u>Step 3:</u> Analysis of reservoirs storage/outflow records.
 Clustering reservoirs based on their management →
 - \circ I \rightarrow Reservoirs that keeps a constant volume.
 - II → Reservoirs with higher outflow in wet season, and minimum release in summer.
 - \circ III \rightarrow Reservoirs with maximum release in summer.
 - \circ IV \rightarrow Reservoirs with other trends.
 - \circ V \rightarrow Reservoirs with lack of data.



J F M A My Jn JI Ag S O N D


10.

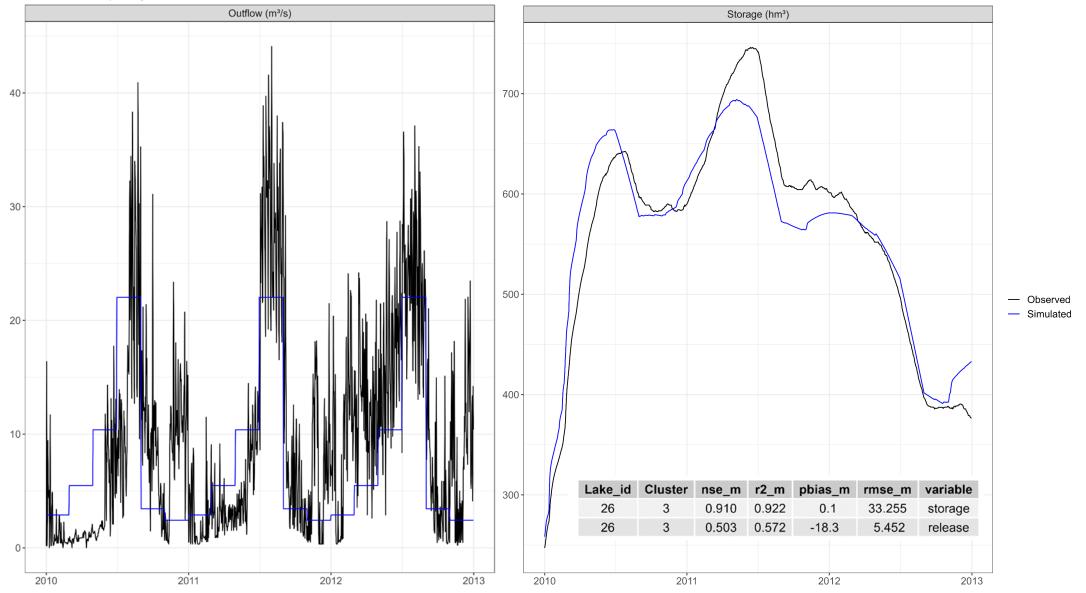
5


Average release (m³/s): Distribution at monthly scale

Outflow: Average monthly (m³/s)

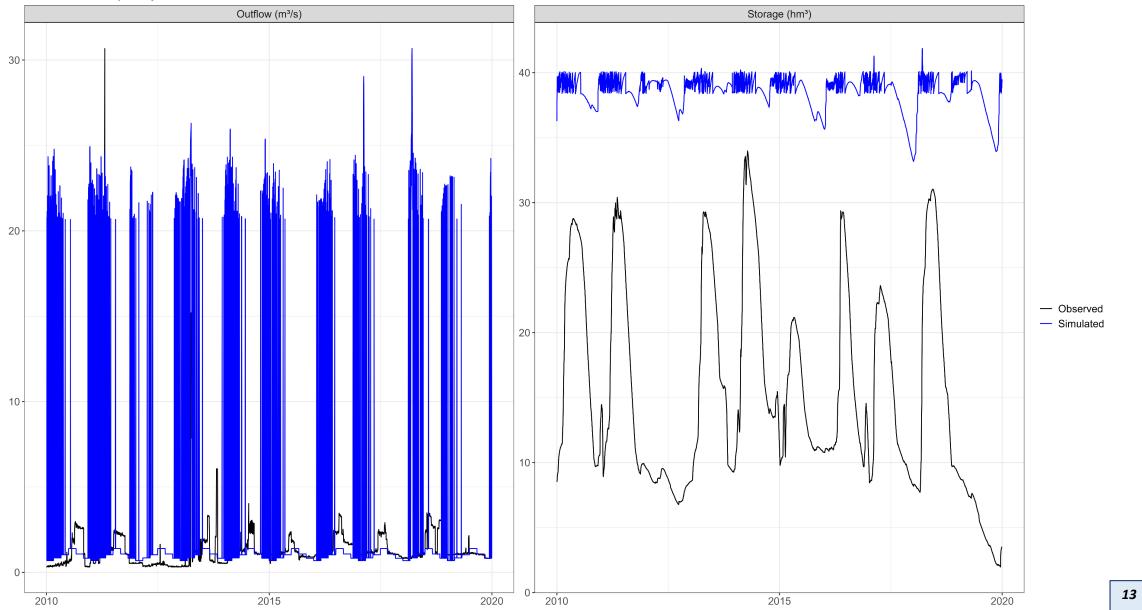
- <u>Step 4:</u> Creation of a general decision table structure → 3
 different scenarios:
 - i) Emergency: Volume > Emergency volume → Emergency release.
 - ii) Water scarcity: Volume < Water scarcity volume → Release the environmental flow.
 - iii) Regular conditions: Water scarcity volume < Volume <
 Emergency volume → Regular release.
- Step 5: Adapting the decision table structure for the different groups
 → The regular release was configured differently for the groups:
 - Cluster I: Release the inflow.
 - Cluster V (no data): Release the environmental flow (defined for every 3 months in the RBMP).
 - Clusters 2-4: Release the median observed release for every 2 months.

Release options \rightarrow *res_hydro.f90 file*


Name	Purpose	const1	const2	fp
ab_emer	Release all volume above evol in a day	-	-	-
days	Release all the volume above file pointer (above 0 in case of null) divided by const_1 and dividided by the number of days since the first excess was produced	Number of days to release excess	-	null, pvol, evol
dyrt	Release all the volume above file pointer (above 0 in case of null) divided by const_1 and dividided by the number of days since the first excess was produced, plus a percentage of the principal volume	Number of days to release excess	Percentage of pvol to release (%)	null, pvol, evol
inflo_frac	Release a fraction of the inflow	Fraction of the inflow to release	-	-
inflo_rate	Release inflow plus a rate or release a stablished rate (the greater)	Release rate in addition to inflow (m ³ /s)	Release rate (m ³ /s)	
inflo_targ	Relase inflow plus volume above evol fraction (defined in lim_const of the condition)		-	
irrig_dmd	Release to supply a fraction of a demand of irrigation or water rigths objects	Fraction of the demand (m ³ /d) to supply	Demand number identifier	wro, hru
meas	Release outflow according to records (requires recall data)	-	-	1, 2, 3, (daily, monthly, annual)
rate	Release a constant rate	Release rate (m ³ /s)	-	-
rate_pct	Release a percentage of pvol	Percentage of pvol to release (%)	-	-
weir	Release based on weir equation using water level		-	

• <u>Step 6:</u> Adapting decision tables for the different reservoirs: Example of decision table for Reservoir 26 (Cluster 3)

name lake_26_g3_buendia	conds 12	alts 11	acts 11																
var	obj	obj_num	lim var	lim_op	lim const	alt1	alt2	alt3	alt4	a	1t5	а	lt6	alt7	ć	alt8	alt9	alt10	alt11
vol	res	0	evol	*	0.90000	>	-	-	-		-		<	<		<	<	<	<
vol	res	0	evol	*	0.10000	-	<	<	<		<		>	>		>	>	>	>
month	null	0	null	-	4.00000	-	<	-	-		-		-	-		>	-	-	-
month	null	0	null	-	7.00000	-	-	<	-		-		-	-		<	-	-	-
month	null	0	null	-	10.00000	-	-	-	<		-		-	-		-	-	-	>
month	null	0	null	-	9.00000	-	-	-	-		>		-	-		-	<	-	-
month	null	0	null	-	2.00000	-	-	-	-		-		-	>		-	-	-	-
month	null	0	null	-	3.00000	-	-	>	-		-		<	-		-	-	-	-
month	null	0	null	-	5.00000	-	-	-	-		-		-	<		-	-	-	-
month	null	0	null	-	6.00000	-	-	-	>		-		-	-		-	>	-	-
month	null	0	null	-	8.00000	-	-	-	-		-		-	-		-	-	>	-
month	null	0	null	-	11.00000	-	-	-	-		-		-	-		-	-	<	-
act_typ	obj	obj_num	name	option	const	const2		fp	outcome										
release	res	0	emergency	days	3.00000	0.85000		evol	y n	n n	n	n	n n	n n	n				
release	res	0	minim_1	rate	2.53000	0.00000			n y	n n	n	n	n n	n n	n			RGEN	$\sim v$
release	res	0	minim_2	rate	2.24000	0.00000		null	n n	y n	n	n	n n	n n	n		CIVIC	RGEIN	L T
release	res	0	minim_3	rate	1.77000	0.00000			n n	n y	n	n	n n	n n	n				
release	res	0	minim_4	rate	1.95000	0.00000		null	n n	n n	У	n	n n	n n	n	١.			
release	res	0	norm_1	rate	2.61600	0.00000		null	n n	n n	n	У	n n	n n	n	٧١	AIER	SCAR	CITY
release	res	0	norm_2	rate	5.49800	0.00000		null	n n	n n	n	n	y n	n n	n				
release	res	0	norm_3	rate	10.45100	0.00000		null	n n	n n	n	n	n y	n n	n				
release	res	0	norm_4	rate	21.93800	0.00000		null	n n	n n	n	n	n n	y n	n		KE(GULAR	ί .
release	res	0	norm_5	rate	3.46000	0.00000		null	n n	n n	n	n	n n	n y	n				
release	res	0	norm_6	rate	2.41900	0.00000		null	n n	n n	n	n	n n	n n	У				


Results: Simulation of Reservoirs

Buendia , capacity = 1651 hm³

Results: Simulation of Reservoirs

Pardo, El, capacity = 44.63 hm³

Methodology: Simulation of Irrigation (DT + WRO)

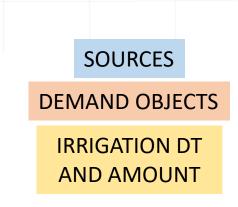
- <u>Step 1</u>: Introduction of irrigated crops to the model →
 Specific land use (AGRR), simulated as corn.
- <u>Step 2</u>: Configuring an irrigation decision table (*lum.dtl*):
 - Conditions → Months, water stress and number of days since last application.
 - Irrigate during irrigation seas below 0.9.
 - Irrigate anytime if water stre

This decision table is used to trigger the demand of water for each HRU

name irr crt	conds 5	alts 2	acts 1	CONDITIONS ACTIONS CON		ERNATIVES	
var	obj	obj num	lim var	lim op	lim const	alt1	alt2
month	null	- 0	null		4.00000	>=	_
month	null	0	null	-	10.00000	<=	-
days irr	hru	0	null	-	3.00000	>	>
w stress	hru	0	null	-	0.90000	<	-
w_stress	hru	0	null	-	0.60000	-	<
act_typ	obj	obj_num	name	option	const	const2	fp outo
irr_demand	hru	0	irr_apr_oct	sprinkler_med	20.00000 20.0	0000	null y y

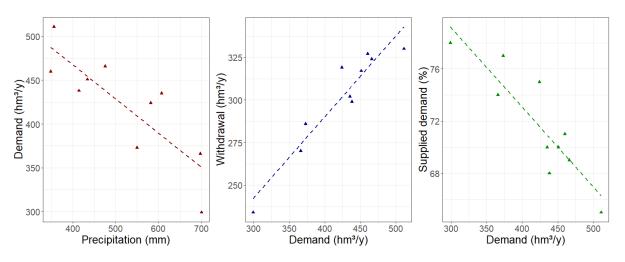
me

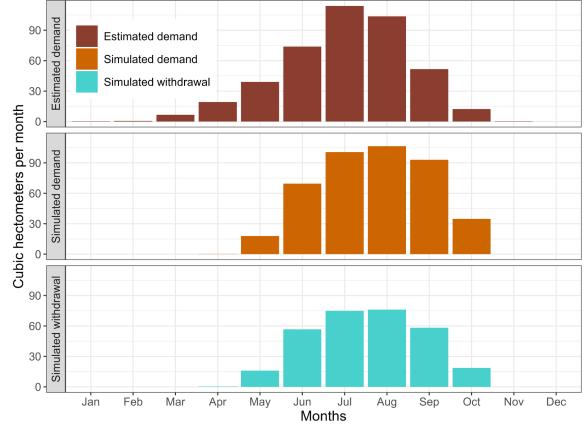
Methodology: Simulation of Irrigation (DT + WRO)


• <u>Step 3:</u> Configuring the water allocation file:

A) Define source and demand objects.

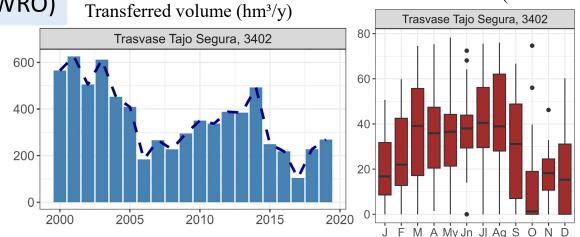
- Demand objects \rightarrow Every AGRR HRU (282)
- Source objects → Closest channel for each HRU.


B) Create water allocation tables \rightarrow One table was created for each source.


NAME	nel_19_irri		E_TYP SRC gh_right_fir	—	1D_OBS_CH	A_DB 2 v								
	SRC_NUM OB		OB_NUM JAN_	_		_ ,	MAY_MIN J	UN_MIN	JUL_MIN	N AUG_MI	N SEP_	MIN OCT_M	IN NOV_M	IN DEC_MIN
1	cha 19	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	1 0.0	91	0.01	0.01	0.01
NU	MB OB_TYP	OB_NU	JM WITHDR	AMOUN	NT W_RT	TR_TYP TR	EAT RCV_OE	RC\	V_NUM RO	CV_DTL S	SRCS	SCRC1	FF	RAC1 COMP1
1	hru	452	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
2	hru	453	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
3	hru	434	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
4	hru	435	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
5	hru	436	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
6	hru	437	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
7	hru	388	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
8	hru	389	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
9	hru	340	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
10	hru	341	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
11	hru	342	irr_crt	15	sr	null	null	null	0	null	1	1	1	n
12	hru	343	irr_crt	15	sr	null	null	null	0	null	1	1	1	n

Results: Irrigation implementation

Period	Precipitation (mm/y)	Demand (hm³/y)	Withdrawal (hm³/y)	Supplied demand (%)
2010	700	299	234	78
2011	475	466	324	69
2012	414	438	299	68
2013	549	373	286	77
2014	581	424	319	75
2015	348	460	327	71
2016	607	435	302	70
2017	355	511	330	65
2018	697	366	270	74
2019	433	451	317	70
2010-2019	9 516	422	301	71

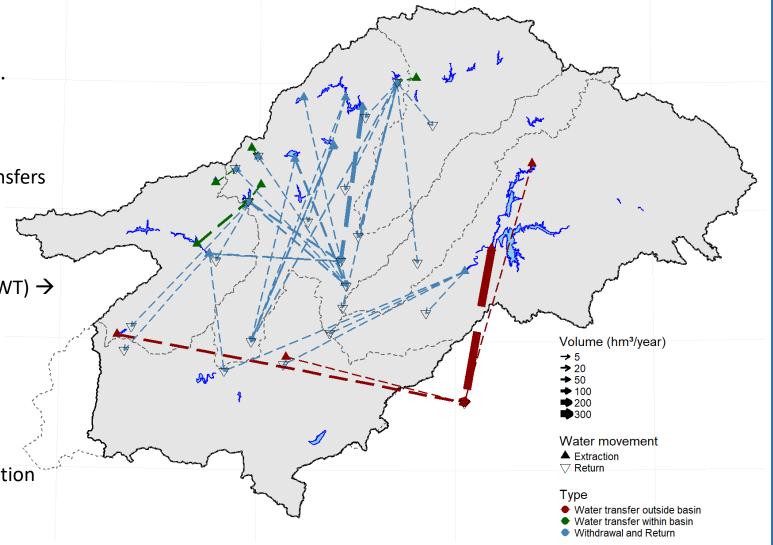

Results: Irrigation implementation

AGRR HRUs Average values

Methodology: Simulation of Water transfers (DT+WRO)

- <u>Step 1</u>: Configuring water transfers decision tables (*flo_con.dtl*).
 - \circ $\,$ Water transfer records were analysed.
 - A decision table was created for each water transfer to allocate the mean volumen recorded for every two months.

Transfer options \rightarrow actions.f90 file


Option	Description
flo_cms	Configure the transferred volume in cubic meters per second.
min_cms	Define a minimum flow in the source; only transfer the excess.
all_flow	Transfer all the flow from the source.
min_frac	Transfer a fraction of the source's flow.
recall	Use records of transferred volumes at daily, monthly, and yearly time steps.

flo con.d	ltl												
36													
NAME		CONDS	ALTS A	CTS									
out tag s	sea wt	10	6	6									
JAR	OBJ	OB NUM	LIM VAR	LIM OP	LIM (CONST	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	5
nonth	null	0	null	_	2.0	00000	-	>	-	-	-	-	
nonth	null	0	null	-	3.(00000	<	_	-	-	-	-	
nonth	null	0	null	-	4.(00000	_	_	>	-	-	-	
nonth	null	0	null	-	5.0	00000	-	<	-	-	-	-	
nonth	null	0	null	-	6.0	00000	-	-	-	>	-	-	
nonth	null	0	null	-	7.(00000	-	-	<	-	-	-	
nonth	null	0	null	-	8.(00000	-	-	-	-	>	-	
nonth	null	0	null	-	9.(00000	-	-	-	<	-	-	
nonth	null	0	null	-	10.0	00000	-	-	-	-	-	>	
nonth	null	0	null	-	11.(00000	-	-	-	-	<	-	
ACT_TYP	OBJ	OBJ_NU	JM NAME		OPTION	CONS		IST2	FP		OUTCO	OMES	
livert	null	0	tswt_d	vt_1 f	lo_cms	9.0	7	0	null	y n	n	n n	
livert	null	0	tswt_d	vt_2 f	lo_cms	14.0	0	0	null	n y	n	n n	
livert	null	0	tswt_d	vt_3 f	lo_cms	14.0	0	0	null	n n	У	n n	
livert	null	0	tswt_d	vt_4 f	lo_cms	15.6		0	null	n n	n	y n	
livert	null	0	tswt_d	vt_5 f	lo_cms	8.04	4	0	null	n n	n	n y	
divert	null	0	<u>tswt d</u>	vt <u>6</u> f	<u>lo cms</u>		0	0	null	n n	n	n n	

Transferred volume (hm³/month)

Methodology: Simulation of Water transfers (DT + WRO)

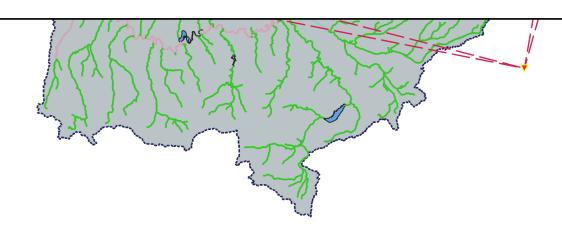
- <u>Step 2</u>: Configuring the water allocation file.
 - A) Define source and demand objects.
 - Source objects → Reservoirs where water transfers are located.
 - Demand objects identification:
 - Water diverts outside the basin (e.g., TSWT) → Non SWAT objects (arbitrary).
 - Water transfers between reservoirs → Receiver reservoirs.
 - Transfers for human consumption → 17 receiver points (channels) were defined according to the WWTPs/discharges location and volume.

Methodology: Simulation of Water transfers (DT + WRO)

• Configuring the water allocation file.

B) Create water allocation tables \rightarrow One table for each type of water transfer (3 in total).

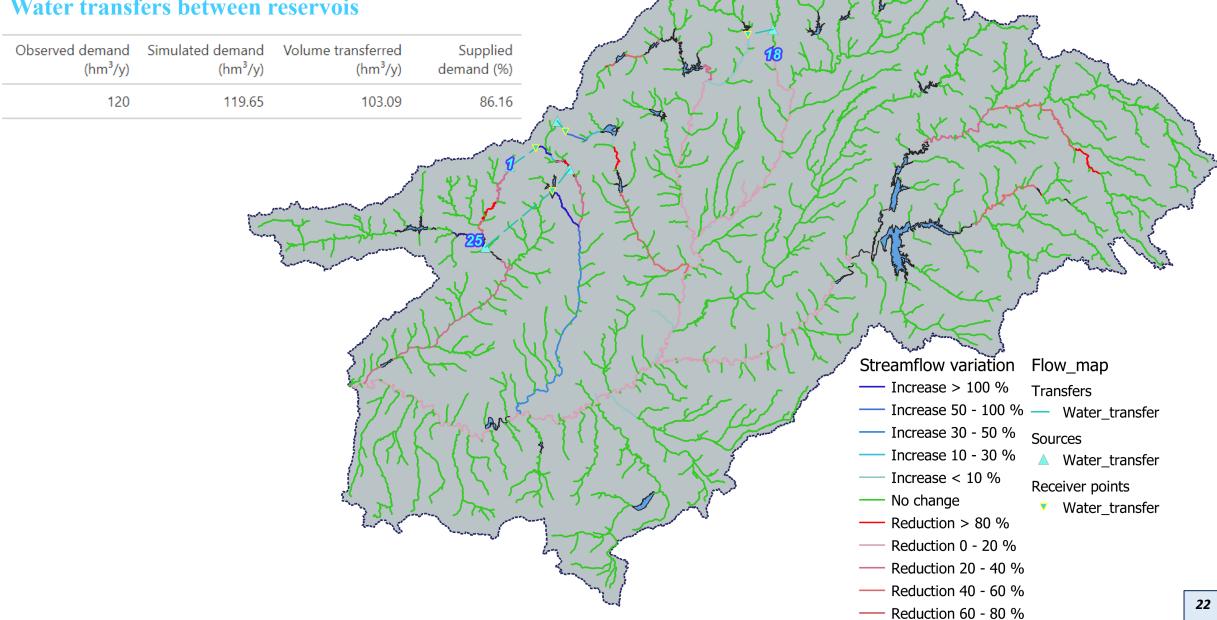
			RULE TYP	SRC	OBS DMD	OBS CHA	A OB							
wtra	nsfs out	side wro	high right first se		- 4 -	4	V							
NUM			MIN MONTHLY (M3/S FO		; FRAC PR	IN SPILI	J FOR RES	S; DEP H	BELOW SUR	RF FOR	AQU)			
1	res		0.15 0.15 0.15 0.15											
2	res	5	0.15 0.15 0.15 0.15	0.15 0.15	0.15 0.15	0.15 0.	.15 0.15	0.15						
3	res	21	0.05 0.05 0.05 0.05	0.05 0.05	0.05 0.05	0.05 0.	.05 0.05	0.05						
4	cha	849	0.01 0.01 0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.	.01 0.01	0.01						
NUMB	OB_TYP	OB_NUM	WITHDR AM	IOUNT W_RI	F TR_TYP TH	REAT RC	CV_OB RO	CV_NUM H	RCV_DTL	SRCS	SCRC1	FRAC1 C	OMP1	
1	divert	1	out_tag_seg_wt	0.0 sr	r null r	null	tswt	1	null	1	1	1.0	n	
2	divert	1	out_czalegas_wt	0.0 sr	r null r	null	czlg	1	null	1	2	1.0	n	
3	divert	1	ave_day 513	22.0 sr	r null r	null	trnp	1	null	1	3	1.0	n	SOURCES
4	divert	1	ave_day 21	.60.0 sr	r null r	null	acca	1	null	1	4	1.0	n	JOONCES
NAME			RULE_TYP	SRC_OBS	s dmd_obs	S CHA_	OB						DEN	MAND OBJECTS
			high_right_first_serv			5	У							WATER
NUM			MIN MONTHLY (M3/S FOF						LOW SURF	FOR A	QU)			VVAIEN
-	res	1 8		.15 0.15 (1 15 0 15 0	0.15 0.1								
1			0.15 0.15 0.15 0.15 0	01 0 01 0									Т	RANSEER DT
2	cha	231	0.01 0.01 0.01 0.01 0	0.01 0.01 0	0.01 0.01 0	0.01 0.0	01 0.01 0	.01						RANSFER DT
23	cha cha	231 542	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0	0.01 0.01 0	0.01 0.01 0 0.01 0.01 0	0.01 0.0	$\begin{array}{c} 01 & 0.01 & 0 \\ 01 & 0.01 & 0 \end{array}$.01						RANSFER DT
3 4	cha cha res	231 542 1	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0	0.01 0.01 0	$\begin{array}{c} 0.01 & 0.01 \\ 0.01 & 0.01 \\ 0.01 & 0.01 \\ 0.15 & 0.15 \end{array}$	0.01 0.0 0.01 0.0 0.15 0.1	01 0.01 0 01 0.01 0 .5 0.15 0	.01 .01 .15						-
3 4 5	cha cha res res	231 542 1 25	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0	$0.01 \ 0.00 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \ 0.01 \ 0.00 \ $	0.01 0.01 0 0.01 0.01 0 0.15 0.15 0 0.15 0.15 0	0.01 0.0 0.01 0.0 0.15 0.1 0.15 0.1	01 0.01 0 01 0.01 0 .5 0.15 0 .5 0.15 0	.01 .01 .15 .15	RCV DTI.	SRCS	SCRC1	FRAC1 (A	-
3 4	cha cha res res 0B_TYP	231 542 1 25 OB_NUM	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0	0.01 0.01 (0.15 0.15 (0.15 0.15 (AMOUNT W_	0.01 0.01 0 0.01 0.01 0 0.15 0.15 0 0.15 0.15 0 _RT TR_TYE	0.01 0.0 0.01 0.0 0.15 0.1 0.15 0.1 P TREAT	01 0.01 0 01 0.01 0 .5 0.15 0 .5 0.15 0 7 RCV_0B	.01 .01 .15 .15 RCV_NUM	RCV_DTL	SRCS	SCRC1	FRAC1	A Comp1	-
3 4 5	cha cha res ces ces OB_TYP divert	231 542 1 25	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0).01 0.01 ().15 0.15 ().15 0.15 (AMOUNT W 0.0	0.01 0.01 0 0.01 0.01 0 0.15 0.15 0 0.15 0.15 0 _RT TR_TYP sr null	0.01 0.0 0.01 0.0 0.15 0.1 0.15 0.1 P TREAT 1 null	1 0.01 0 1 0.01 0 5 0.15 0 5 0.15 0 RCV_OB res	.01 .01 .15 .15 RCV_NUM 28	null	SRCS 1 1	1	1.0	A	-
3 4 5	cha cha res res 0B_TYP	231 542 1 25 OB_NUM	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0	0.01 0.01 (0.15 0.15 (0.15 0.15 (AMOUNT W 0.0 0.0	0.01 0.01 0 0.01 0.01 0 0.15 0.15 0 0.15 0.15 0 _RT TR_TYP sr null	0.01 0.0 0.01 0.0 0.15 0.1 0.15 0.1 P TREAT 1 null 1 null	1 0.01 0 1 0.01 0 5 0.15 0 5 0.15 0 RCV_OB res cha	.01 .01 .15 .15 RCV_NUM	null null	SRCS 1 1 1	SCRC1 1 2 3		A COMP1 n	-
3 4 5	cha cha res cb cb cb cb cb cb cb cb cb cb cb cb cb	231 542 1 25 OB_NUM 1 1	0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0.0	0.01 0.01 (0.15 0.15 (0.15 0.15 (AMOUNT W 0.0 0.0	0.01 0.01 0 0.01 0.01 0 0.15 0.15 0 0.15 0.15 0 _RT TR_TYP sr null sr null	0.01 0.0 0.01 0.0 0.15 0.1 0.15 0.1 P TREAT l null l null l null	1 0.01 0 1 0.01 0 5 0.15 0 5 0.15 0 C RCV_OB res cha res	.01 .01 .15 .15 RCV_NUM 28 321	null null null	SRCS 1 1 1 1	1 2	1.0 1.0	COMP1 n n	-
3 4 5	cha cha res ces OB_TYP divert divert divert	231 542 1 25 OB_NUM 1 1 1	0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.0	0.01 0.01 (0.15 0.15 (0.15 0.15 (AMOUNT W 0.0 0.0 0.0	0.01 0.01 0 0.01 0.01 0 0.15 0.15 0 0.15 0.15 0 RT TR_TYP sr null sr null sr null	0.01 0.0 0.01 0.0 0.15 0.1 0.15 0.1 P TREAT 1 null 1 null 1 null 1 null	1 0.01 0 1 0.01 0 5 0.15 0 5 0.15 0 C RCV_OB res cha res cha	.01 .01 .15 .15 RCV_NUM 28 321 11	null null null null	SRCS 1 1 1 1 1	1 2 3	1.0 1.0 1.0	COMP1 n n n	-

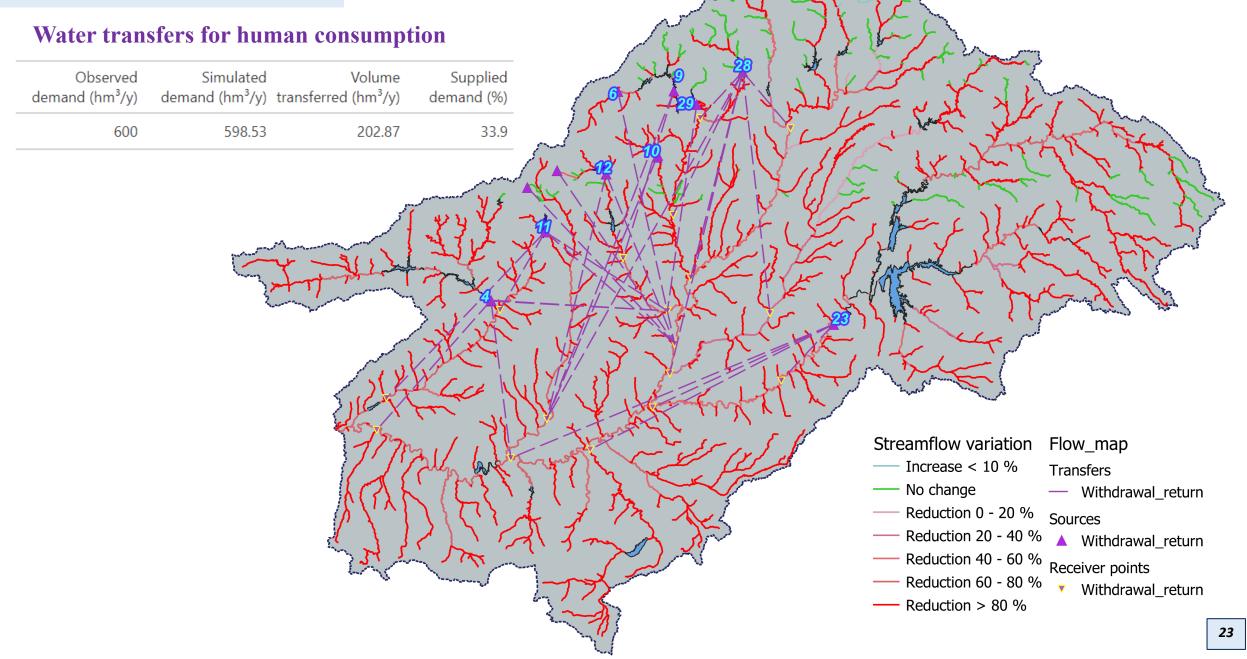

Results: Water transfers

Water transfers outside the basin

Ok	oserved demand	Simulated demand	Volume transferred	Supplied
	(hm³/y)	(hm³/y)	(hm³/y)	demand (%)
	456	456.2	339.94	74.51

Implementation of water transfers was evaluated individually for each type of water transfers (outside the basin, between reservoirs, for human consumption).


Streamflow variation (%) was compared: Management vs. No-management scenario.


- Reduction 0 20 %
- Outside_basin
- Reduction 40 60 %
- Flow_map
- Transfers
- Outside_basin

Results: Water transfers

Water transfers between reservois

Results: Water transfers

Water management in the UTRB was explored and simulated with SWAT+, using **decision tables** and the **water allocation module**.

The flexibility of these new features allowed to simulate **irrigation**, different kinds of **water transfers** and **reservoirs operations**.

Some **promising results** were obtained, certain aspects are not functioning properly and **will be fixed**.

Simulating water management actions increases SWAT capabilities and will boost its use.

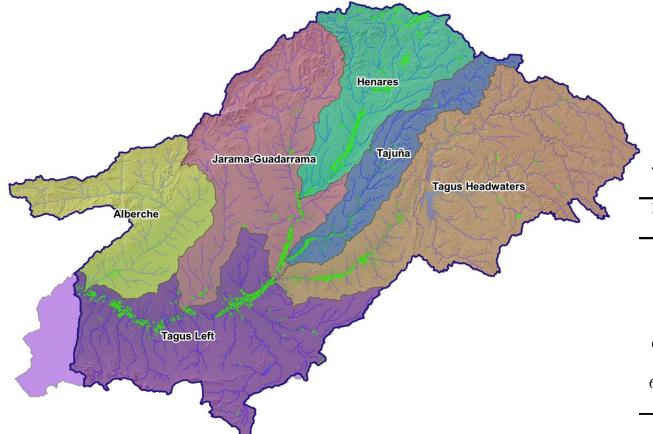
Thanks for your attention!

alejandro.sanchezg@uah.es

 \bowtie

https://www.linkedin.com/in/alejandrosanchezgomezasg/

https://github.com/alejandrosgz

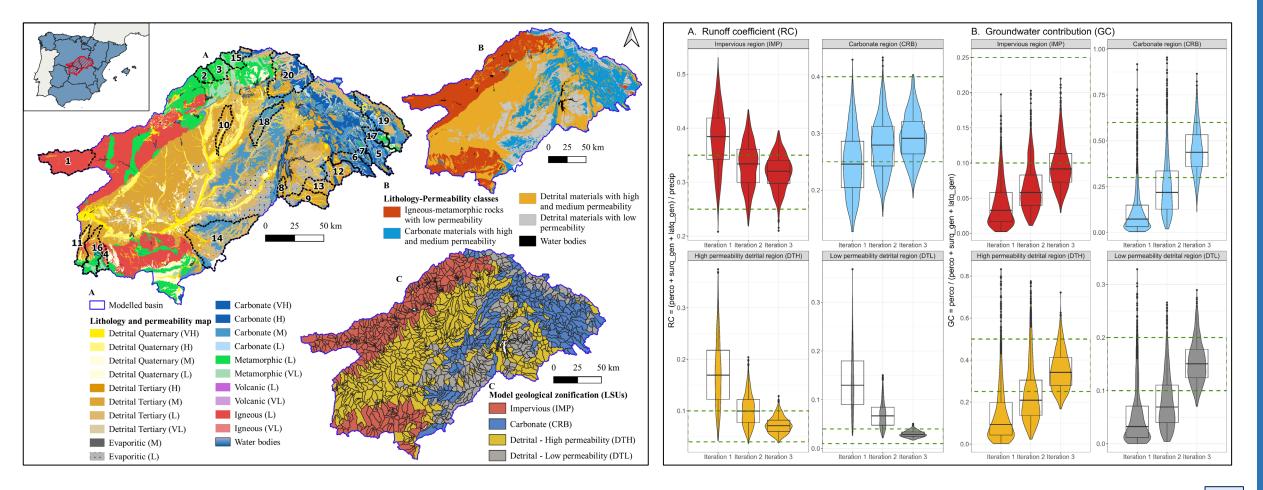


Study area: The Upper Tagus River Basin

Water management in the UTRB:

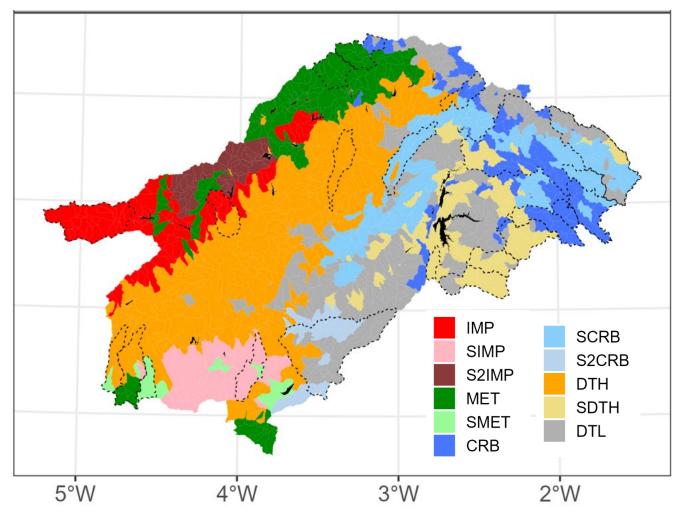
- Based on the Water Framework Directive (*WFD*) and the Tagus River Basin Management Plan (*RBMP*).
- Management scale: Exploitation system.

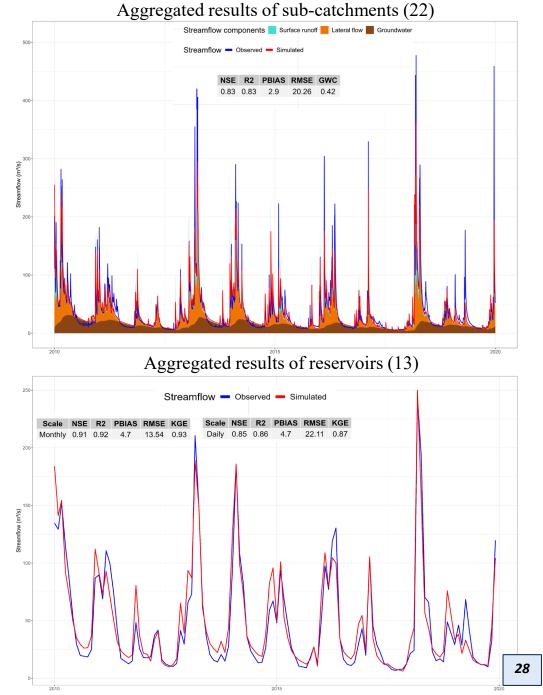
Water demands


• Human, industrial and agricultural demand estimated using data from the RMBP for each exploitation system.

	Exploitation system	Population	Human and industrial demand	Industrial demand (% of	Water loss (% of total
			(hm ³)	total demand)	demand)
	1, Tagus Headwaters	213,584	23.4	14.3	19.1
	2, Tajuña	65,818	35.3	8.7	11.4
	3, Henares	564,830	83.1	15.5	8.9
	4, Jarama- Guadarrama	5,816,537	548.9	5.2	7.2
	5, Alberche	209,522	44.7	5.2	14.4
	6, Tagus Left	675,769	112.5	14.7	13.7
3	Total	7,546,060	847.8	7.89	9.11
	Exploitation	Irrigated	Raw demand	Net demand	Irrigation
	system	surface (ha)	(hm^{3}/y)	(hm³/y)	amount (mm/y)
	1, Tagus Headwaters	20,278 (14%)	123.8 (8%)	84.6 (11%)	417
	2, Tajuña	6,269 (21%)	41 (10%)	24.4 (15%)	389
	3, Henares	19,573 (15%)	134.7 (8%)	75.5 (13%)	386
	4, Jarama- Guadarrama	17,178 (37%)	97.2 (24%)	71.4 (29%)	416
	5, Alberche	6,641 (47%)	32.8 (28%)	23.5 (35%)	354
	6, Tagus Left	31,846 (4%)	327.1 (1%)	142.6 (3%)	448
	Total	101,784 (23%)	756.6 (13%)	421.9 (18%)	415
-					

Methodology: Model calibration


A Multi-spatial and Multi-criteria Zonal calibration was performed:


Soft calibration \rightarrow Adjusting water yield and groundwater contribution in 4 geological regions.

Methodology: Model calibration

Hard calibration and validation \rightarrow Streamflow simulation performance and groundwater contribution in **22 subcatchments** + Reservoir inflow performance in **13 reservoirs.**

