Linking catchment models with Earth Observation data – risk mapping Dissolved Inorganic Nitrogen (DIN) in Liverpool Bay Dr Richard Heal

28th June 2023 SWAT Conference, Aarhus, Denmark

Improving the links between land and sea

Motivation: Assessment of water quality in coastal & transitional zones relies on spatially and temporally limited in situ data coupled with simplistic consideration of riverine inputs

Considerations

Objective: Develop an assessment approach that can use the reach of Earth Observation data coupled with river catchment model(s)

- Earth observation data can provide wide spatial and temporal resolution in coastal environments
- Catchment models enable source apportionment and future scenarios to be considered
- Catchment models can help with data gaps

EO versus hydrodynamic models for understanding transport of nutrients in coastal waters

Satellite data

- High spatial extent
- Relatively easy processing demand
- Uses observed data across a large spatial and temporal range
- Cloud cover
- Relies on proxy for nutrient values (e.g. correlation between nutrient and ocean colour)

Hydrodynamic models

- Considers the complete water column and potential stratification (3D)
- Tracking of nutrients allow accurate consideration of transit
- Computationally demanding
- Rely on in situ data for validation
- Bespoke

Study area – Liverpool Bay

- Eastern section of the Irish Sea off the North-West coast of England and the North-East coast of Wales
- Shallow bay less than 50m depth
- Freshwater input from 12 major rivers along the coastline
 - Clwyd
 - Dee
 - Mersey
 - Ribble
 - Wyre
 - Conwy, Alt, Lune, Keer, Bela (including Kent), Leven & Duddon

Example DIN exposure risk map

• Example – river Ribble for January

Risk of DIN exposure map

Seasonal DIN Exposure Risk

- Contour lines generated to mark the boundary of coastal waters with a risk 5350 > 0.75
- 0.75 risk contour line was restricted to nearshore coastal water north and south of the river mouth
- Extended into the open ocean during the autumn
- Extend was greatest in Nov, Dec, Jan and Feb
- Incursion into nearby Mersey was seen in spring (not at peak extent)

Understanding the influence of all inputs

- Exposure to DIN risk maps generated for all 12 rivers
- Maps scaled according to the relative input of DIN to the bay
 - Based on in situ riverine measurements

- Cumulative risk maps generated for all 12 months/seasonal/annual
- Frequency of risk categories over the year shown opposite

Source apportionment of DIN and climate change modelling

- Catchment models can be used to identify key sources/sinks
 - Need good spatial data
- SWAT+ models generated for all 12 catchments
 - Initial models set up, calibrated and run
 - Promising initial results
- Weather data supplied at defined weather station locations matched to climate change models

Example SWAT+ Model (Ribble)

- Model sensitivity analysis and calibration performed (SWAT Toolbox)
 - Streamflow validation
 - Monthly NSE 0.71 (pBIAS 13%)
 - Model less responsive on daily ٠ basis
 - Nutrient data gap

Ра

• Baseline model run with climate change data

Parame	tei	Value					
Catchme	nt	1934.7					
Maximu	Maximum catchment elevation (m)						
Mean ca	tch	ment elevation (m)	159				
Number	14						
(%	U	rban	14.1				
/er (9	Α	griculture	65.7				
		Arable	7.5				
/lan		Pasture	6.4				
use		Improved grassland	51.8				
land	F	orest	1.3				
nent	S	crub	9.3				
tchn		Natural grassland	4.9				
Ca		Moors and heathland	4.4				

Change in Flow Rate & DIN Loads under r001i1p02123

Statist	ic	River Catchment												
Statist		Alt	Bela	Conwy	Clwyd	Dee	Duddon	Kent	Leven	Lune	Mersey	Ribble	Wyre	
i relative [*] V flow rate	Winter	1.01	0.94	0.82	0.51	0.59	0.87	1.76	0.94	0.92	1.06	0.81	1.09	
	Spring	1.16	1.14	1.02	0.72	0.69	1.03	2.22	0.94	1.32	0.93	1.24	1.70	
	Summer	0.92	0.39	0.51	0.20	0.28	0.63	2.09	0.54	0.69	0.62	0.69	1.33	
Jear onth	Autumn	0.72	0.33	0.33	0.14	0.22	0.34	1.04	0.43	0.57	0.62	0.53	0.83	
	Annual	0.95	0.70	0.67	0.39	0.44	0.72	1.78	0.71	0.88	0.81	0.82	1.24	
NIC	Winter	1.26	0.87	1.17	1.20	0.76	0.78	1.69	0.78	0.91	2.84	0.91	0.87	
ve* s	Spring	1.66	1.09	1.43	1.04	1.07	0.74	1.48	0.97	0.94	2.13	1.28	1.14	
elati oad:	Summer	1.43	1.63	1.72	0.40	0.74	0.54	1.30	1.04	1.13	1.86	0.93	0.98	
Mean re Io	Autumn	0.85	0.77	0.65	0.41	0.20	0.14	1.12	0.52	1.05	0.97	0.64	0.59	
	Annual	1.30	1.09	1.25	0.76	0.69	0.55	1.40	0.83	1.01	1.95	0.94	0.89	

* - relative values are for predictions under r001i1p02123 versus current day

Modelling changes from land use and climate

UK Climate Change Projections

UK Climate Projections (UKCP)

https://www.metoffice.gov.uk/research/approach/collaboration/ukcp

- Regional projections using 12 GC3.05 PPE members which are driven by global simulations under RCP8.5.
 - RCP8.5 predicts a 3.9C rise in median annual temperature (2080-2099 versus 1981-2000)
- Projections are on 5km grid for the British Isles (day, month, year)
 - Precipitation, air temp, E & N wind speed, relative humidity, net surface short wave radiation
 - Predict:
 - Increase in annual mean temperature
 - Increase in winter precipitation
 - Decrease in summer precipitation

Centre for Environment Fisheries & Aquaculture Science

Graphs from Lowe et al., 2018

Summary statistics of climate change precipitation data

C.	tatistic	Curront	Future under climate change models (member number)												
Statistic		Current	All	00000	01113	01554	01649	01843	01935	02123	02242	02305	02335	024915	02868
N	lean Daily (mm)	3.6	4.1	4.2	4.2	4.1	3.9	4.1	4.3	3.6	4.1	4.2	4.0	4.0	4.6
	Winter	3.8	5.3	5.5	4.1	4.9	5.6	5.5	6.4	4.4	5.1	5.5	5.3	5.6	5.9
	Spring	3.3	3.3	3.7	3.0	3.2	3.1	3.0	3.7	3.0	3.6	3.2	3.4	3.1	3.7
	Summer	3.8	3.2	3.3	3.7	3.7	2.2	3.5	2.9	3.3	3.0	3.9	3.1	2.5	3.4
	Autumn	3.6	4.6	4.4	6.0	4.5	4.6	4.3	4.4	3.7	4.9	4.3	4.2	4.7	5.4
H p	igh rainfall (95 ercentile)	15.7	18.5	19.6	18.6	19.2	18.1	18.4	19.2	16.9	18.4	19.0	17.6	18.3	19.9
Mean days per year with no rainfall		41.2	105.9	104.5	92.9	103.9	113.4	105.4	106.7	120.1	105.7	103.0	94.5	119.0	101.5
Mean days per year above current mean rainfall		109.3	114.1	113.9	117.1	114.7	106.2	112.4	119.9	102.4	115.4	117.1	114.6	110.3	125.2

Ribble Catchment - Change in Flow Rate Statistics

- Using observed and projections on 5km grid for the British Isles (day, month, year)
 - Pseudo-weather stations at the centroid location
 - Monthly NSE 0.90 (pBIAS 9.5%)
- Range of differences in the flow rate change observed
 - Small increase in flow rate at the output that was more marked in Autumn and Winter

		Futur	e undei	r climat	te chan	ge moo	dels (m	ember	numbe	er)					
Statistic		All	00000	01113	01554	01649	01843	01935	02123	02242	02305	02335	02491 5	02868	
elative Mean Aonthly Flow Man Anth Autu	Winter	1.28	1.30	1.06	1.21	1.29	1.19	1.63	0.94	1.19	1.39	1.49	1.28	1.39	11/12
	Spring	1.14	1.78	1.18	1.07	1.14	0.93	1.41	0.82	0.93	1.16	1.05	1.16	1.02	9/12
	Summer	1.09	0.47	0.68	0.77	0.25	1.19	1.73	1.00	1.19	1.23	1.53	1.40	1.64	7/12
	Autumn	1.28	0.81	1.28	1.06	0.75	1.30	1.82	1.22	1.30	1.07	1.52	1.34	1.93	10/12
~ ~	Annual	1.09	1.09	1.05	1.03	0.86	1.08	1.30	0.95	1.08	0.89	1.19	0.95	1.58	8/12

Ribble Catchment - Change in DIN Loads

Statistic		Future under climate change models (member number)													
		All	00000	01113	01554	01649	01843	01935	02123	02242	02305	02335	024915	02868	
⊆ >	Winter	0.86	0.83	0.74	0.86	0.86	0.80	1.14	0.73	0.80	1.00	0.85	0.93	0.79	
/lear Flow	Spring	0.67	0.67	0.61	0.56	0.51	0.60	0.96	0.63	0.60	0.91	0.68	0.76	0.60	
ive ⁿ thly	Summer	0.68	0.69	0.83	0.82	0.48	0.54	0.90	0.52	0.54	0.78	0.69	0.72	0.64	
elati Joni	Autumn	0.70	0.72	0.93	0.86	0.75	0.56	0.77	0.65	0.56	0.61	0.57	0.64	0.72	
2 2	Annual	0.70	0.73	0.78	0.77	0.65	0.67	0.69	0.77	0.67	0.73	0.62	0.62	0.76	

- Decreased DIN output from the catchment under RCP8.5
- Note that the land cover and management practices were the same under the climate change scenarios
 - Currently factoring in different land management approaches based on climate change

DIN Risk Exposure under Climate Change

- Risk is scaled versus the baseline DIN risk exposure
- Results are shown for climate change model r001i1p02123

Novembe

Incorporating point sources

- Combined Sewer Overflows and Waste Water Treatment outfalls incorporated into models
- Data on the exact time and volume of spills into the watercourses is limited

Science

Estimating climate change effect on CSOs

- Using a rainfall trigger to disperse the CSO spills based on the local rainfall to the CSO
- 12 members of UKCP18 RCP8.5 5km local projections were used
- Trigger set at the trigger used in 2020
- Mean is the mean number across the 12 members

Ribble	Number of Spills							
CSO	Current	Climate change						
1	201	169						
2	33	129						
3	38	30						
4	59	56						
5	170	142						
6	290	365						
7	330	365						
8	166	141						
9	273	365						
10	32	22						

Ribble SWAT Model

- ArcSWAT model generated to enable incorporation of CSOs
 - Is this going to be included in SWAT+ soon?
- Currently recalibrating the model
 - Differences between SWAT2012 and SWAT+

Paramet	er.	Ribble				
Catchmei	nt area (kr	1948.2				
Maximun	n catchme	693				
Mean cat	chment el	159				
Number	of subbasi	79				
(%	Urban		14.3			
/er (9	Agricultu	re	63.1			
d cov	Arable		7.3			
/lan	Pastur	e	9.3			
use	Improv	ved grassland	46.5			
land	Forest		3.1			
nent	Scrub		10.1			
tchn	Natura	l grassland	5.2			
Ca	Moors	and heathland	4.9			

Summary

- 1. Risk mapping approach developed to enable assessment using Earth observation data
- 2. Coupling of SWAT catchments models to the risk assessment framework to enable source apportionment
- 3. Demonstrated the use of SWAT model under climate change and land use change scenarios to assess impact in the coastal zone
 - Need to consider uncertainty in climate change models and weather station locations
 - Are SWAT parameters sensitive to climate change?

Next steps...

- 1. Refinement of the SWAT models to better model nutrient and pathogen transmission
 - 1. Improvement to CSO spill data when, how much etc.
 - 2. Incorporation of WWTW & septic tanks (where known) into the model
 - 3. Better coverage of land practices
- 2. Using outputs from the refined models of the 12 catchments to produce cumulative DIN exposure risk maps
- 3. Development of the risk mapping approach to include spread of pathogen (bacteria) in the coastal waters
 - 1. Adapt the method to involve die-off within saline waters
- 4. Application of the process to other UK catchments (Thames)
- 5. Augmentation of the approach with environmentally vulnerable species, such as maerl, sea grass etc.

References

Lowe, J.A., Bernie, D., Bett, P., Bricheno, L., Brown, S.J., Calvert, D., Clark, R.T., Eagle, K.E., Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G.R., Howard, T.P., Kaye, N., Kendon, E.J., Krijnen, J., Maisey, P., McDonald, R., McInnes, R.N., McSweeney, C.F., Mitchell, J.F.B., Murphy, J.M., Palmer, M., Roberts, C., Rostron, J.W., Sexton, D.M.H., Thornton, H.E., Tinker, J., Tucker, S., Yamazaki, K. & Belcher, S. 2018. UKCP18 science overview report. Exeter, England: Met Office Hadley Centre.

Article

A probabilistic approach to mapping the contribution of individual riverine discharges into Liverpool Bay using distance accumulation cost methods on satellite derived ocean-colour data.

Richard Heal ^{1,*}, Lenka Fronkova ², Tiago Silva ², Kate Collingridge ², Richard Harrod ², Naomi Greenwood ^{2,3} and Michelle Devlin ^{2,3}

Richard.heal@cefas.co.uk

www.cefas.co.uk

@CefasGovUK

www.linkedin.com/company/cefas

Thanks for listening!