BLACKLAND RESEARCH & EXTENSION CENTER

Modeling framework for rice paddy water management and climate impact assessment: Progresses in SWAT+ development

Jaehak Jeong, Jeff Arnold, Soonkun Choi, Seonggyu Park, Kenneth Miller, Ricardo Sorando, Ryan Bailey, Prasad Bandaru

Texas A&M AgriLife Research, Texas, USA; USDA-ARS, Texas, USA; Rural Development Administration, Jeonju, South Korea; Formation Environmental LLC, California, USA; Instituto Cavanilles de Biodiversidad y Biología Evolutiva. University of Valencia, Spain; Colorado State University, Colorado, USA; USDA-ARS, Arizona, USA

Project Goal

<u>Enhance SWAT+ structure and add process modules</u> for agricultural watershed assessment in South Korea and other countries where <u>low-land flooded rice paddies</u> are a significant land use type to evaluate the benefits of conservation practices and assess climate change impact on water use

Water used for food production

Freshwater withdrawals per kilogram of food product

Freshwater withdrawals are measured in liters per kilogram of food product.

Source: Joseph Poore and Thomas Nemecek (2018).

OurWorldInData.org/environmental-impacts-of-food • CC BY

5,605 L

Water used to produce 1kg rice is greater by:

10 times than corn, 12 times than apple, 38 times than potato

Characteristics of primary global rice production systems

Global Rice Production from flooded Paddies

	Production Sys	Production System								
Rice production characteristic	Irrigated lowland	Rainfed lowland	Rainfed upland	Flood prone						
Global production area (million ha)	93	52	15	11						
Global production area (%)	54.4	30.4	8.8	6.4						
Total global production (%)	75	5 19		2						
Primary water source	irrigation	rain	rain	rain/flooding						
Field type	bunded	bunded	non-bunded	non-bunded						
Extent of flooded conditions	continuous	partial	rarely	partial						
Level of chemical inputs	high	medium/low	low	low						
Potential total annual rice crops	2-3	1-2	1	1						
Average yields (t ha ⁻¹)	5.3	2.3	1.0	1.5						

145million ha

Source: IRRI (2013)

Examples of rice production systems in the world

Vietnam

Texas, USA

Ethiopia

China

South Korea

Lowland Rice Paddy System

Figure from Gassman et al. (2021)

$DEP_i = DEP_{i-1} + PCP_i + IRR_i + Q_i + ET_i + VPERC_i + HPERC_i$

DEP: ponding depth PCP: precipitation **IRR: irrigation** Q: weir discharge ET: evapotranspiration **VPERC:** vertical percolation HPERC: horizontal percolation

Inlet

Needs for research and development

Paddy Hydrology, Water Quality, Rice Production	Management Practices Evaluation
Representation of unique characteristics of paddy systems differing from other croplands	To improve water use efficiency and water quality management
Simulation Model needed for systematic assessment	Application of APEX/SWAT Models
No process-based model offers to simulate the dynamics of paddy hydrology, water quality, crop growth, and ag management	Expand well-established global applications of APEX/SWAT to rice paddy assessment

Watershed Impacts

Assess plot-scale to watershedscale impacts of rice paddy systems

Science-driven Policy Development

Holistic and systematic modeling approach to provide regionally specific solutions for agricultural policy development

Recommendation by Gassman et al. (2022)

- The paper by 15 coauthors from seven countries entitled "Simulation of rice paddy systems in SWAT: A review of previous applications and proposed SWAT+ rice paddy module"
- Recommendations on SWAT+ paddy simulation
 - Inherit and expand APEX-Paddy
 - Hydrologic connectivity through object-oriented structure
 - Crop growth submodel for rice and ET calculation where ET>PET \bullet
 - Irrigation source and transfer options
 - Plot-to-plot irrigation-drainage systems ٠
 - Polder paddy systems ٠
 - Irrigation and drainage between paddy plots and spatial objects ٠
 - Water allocation table for defining an irrigation district
 - Vertical/horizontal paddy percolation rates
 - Pollutant cycling and transport processes
 - Pesticide fate and transport

Tasks

- Enhance SWAT+ code for simulating rice paddies
- Add new objects and operations
 - HRUs submerged with paddy irrigation
 - Continuous irrigation with target/threshold depth
 - Transplanting —
 - Puddling
 - Fertilizer application and nutrient transport processes
 - Evapotranspiration scheme for wetting and drying periods _____
 - Weir outlet control vs principal/emergency spillway
- HRU management scheduling
 - Build paddy-related "Conditions" and "Actions" in decision tables for automatic scheduling ____
 - Paddy operations in manual scheduling
 - Water allocation structure for paddy irrigation based on demand and supply
- New process modules
 - Water balance
 - Fertilizer mass balance
 - Pesticide fate and discharge
 - Salinity mass balance and groundwater recharge
- Update SWAT+ Input/Output structure for paddy simulation

Paddy Management Scheduling

3-03-04	15:16	for	SWAT+	rev.	60.5.4	
nt_com			mgt	_		cn2
d_comm			null	L		woodgr_g
e_comm			null	L		wood_f
t_comm_			null	L		pastg_f
n_comm			null			woodgr_g
0_comm			paddy	7	legr	_strow_p
0_comm			paddy1	L	legr	_strow_p
0_comm			paddy2	2	legr	strow_p

Automatic Operations using Decision Tables

			lum.dtl	
			16	
			NAME	CONDS
management.	sch: Management schedules		wolq	2
MGT_NAM	E NUMB_OPS NUMB_AUTO OP_ITE		VAR	OBJ OB
paddy	0 6		phu base0	hru
	plow		days harv	hru
	weir_adj		ACT TYP	OBJ OBJ
	paddy_irr		+i11	hru
	puddle		+ 11	hru
	pl_hv_rice		CIII	mu
	fert_paddy		NAME	CONDS
corn	0 3		woir adi	CONDS
	plow		well_auj	
	pl_hv_rice		VAR	060
	fertl	Conditions ——	month	null
			MONTH	null
			ACT TYP	OBJ
		Actions —	weir_heigr	it hri
			weir_heigh	it hri
			NAME	CONDS
			paddy_irr	4
			VAR	OBJ OF
			weirh	hru
			wet depth	hru

New conditions

wet_depth	!paddy water depth, mm									
weirh	!paddy weir height, mm									
vol_wet	!water volume - stored on an hru m3									
	select case (d_tbl%cond(ic)%lim_var)									
	case ("pvol") !prinicpal storage volume									
	case ("evol") !emergency storage volume									

Total numbers: - 50 conditions - 38 actions

ACT TYP	OBJ	
irrigate	hru	
irrigate	hru	
NAME	CONI)S
puddle	3	
VAR	OBJ	0
month	null	L
weirh	hru	
wet_depth	hru	
ACT TYP	OBJ	0
puddle	hru	
NAME	CONI)S
pl hv rice	3	
VAR	OBJ	0
weirh	hru	
phu base0	hru	
phu plant	hru	
ACT TYP	OBJ	0
plant	hru	
harvest kil	ll hı	cu
—		

month

month

null

null

NAME CONDS fert_paddy 3

New Actions

irrigate	Required for paddy irrigation: d_tbl%act(iac)%name=='ponding'
Irr_demand	Required for paddy irrigation: d_tbl%act(iac)%name=='ponding'
Puddle	!puddle
Impound_on	!turn on hru impounded water - rice paddy or wetland
Impound_off	!remove impoundment
weir_height	!adjust weir height – rice paddy/wetland
	Required: d tbl%act(iac)%option == "wet"

S AL	TS ACTS								
)B NUM	2 2 I.TM VAR	LTM OP	LIM CONST	AT.TT	ALT2				
0	null		0.05000	>	-				
0	null	-	30.00000	-	=				
BJ_NU	M NAME	OPTION	CONST	CON	IST2	FP	OUTCOMES		
0 :	fieldcultivat	fldcult	0.00000	1.000	00	null	y n		
0	chisel_plow	chisplow	0.00000	1.000	00	null	n y		
5	ALTS	ACTS							
-	2	2							
OB_1	NUM LIM_VAR	LIM_OP	LIM_CONST	ALT1	ALT2				
0	evol	-	4	>	>				
0	evol	-	9	<	>				
OB	NUM NAME	1	OPTION	CONST		CONST2	FILE POINTER	R OUT1	OUT2
iru	0 padd	ty	wet	100	•	1	weirl	- У	n
ILU	o pado	ty	wet	0.0		T	weiti	. 11	У
S AL	TS ACTS								
2	2								
OB_NUI	M LIM_VAR	LIM_OP	LIM_CONST	ALT1	ALT2				
0	-	-	0	>	-				
0	nwater	_	60. F	<	-				
0	null	-	9	>=	-				
OB NUI	M NAME		OPTION	CONST	/-	CONST2	FD	OUTCOME	29
0	surface		ponding	90.		60.	null	v n	10
0	surface		ponding	0.		0.	null	n v	
			1					1	
5 AL:	TS ACTS 1								
DB NUM	LIM VAR	LIM OP	LIM CONST	ALT1					
0	evol	_	4	>					
0	-	-	0.	>					
0	hwater	-	0.	>					
BJ_NU	M NAME		OPTION	CONST		CONST2	FP	OUTCOME	S
0	puddle		med_eff	100		1	null	У	
S AL	IS ACTS								
DB NIIM	LTM VAR	LIM OP	LIM CONST	ΔT.Ͳ1	∆T.T2				
0	_	_	0.	<	-				
0	null	-	0.15	>	_				
0	phu mat	-	1.15			-	- >		
BJ NUI	M NAME		OPTION	CONST		CONST2	FP	OUTCO	MES
0	rice120		rice120	0		1	rice120	У	n
ı 0	grain_harv		all	0		1	grain	n	У
S AL!	TS ACTS								
- LLL -	3 3								
	T TM 1770	TTM OD	TTM CONOM	7AT ITT 1		сштк			

Water Allocation for Paddy Irrigation

Water_allocation.wro

water_alloc	ation.wr	C																
1																		
NAME RUL wallo1 nul	_TYP SRC 1 2	_OBS DMD_ 2 n	OBS CHA	OB														
NUM OB TYP	OB NUM	JAN MIN	FEB MIN	MAR MIN	APR MIN	MAY MIN	JUN MIN	JUL MIN	AUG MIN	SEP MIN	OCT MIN	NOV MIN	DEC MIN					
1 cha	1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01					
2 aqu	2	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999					
NUM OB_TYP	OB_NUM	WITHDR		AMOUNT	W_RT	TR_TYP	TREAT	RCV_OB	RCV_NUM	RCV_DT	'L	SRCS	SRC1	FRAC1	COMP1	SRC2	FRAC2	COMP2
1 hru	1	irr_RIC2	2_SJV	10	sr	null	null	null	0	null		2	1	0.65	n	2	0.35	У
2 hru	2	irr_RIC2	2_SJV	10	sr	null	null	null	0	null		2	1	0.65	n	2	0.35	У

Lum.dtl

1	NTAME	0								
	NAME	CO	NDS ALTS	ACTS						
	irr_RIC2_	SJV	3 2	2 1						
	VAR	OBJ	OB_NUM	LIM_VAR	LIM_OP	LIM_CONST	L AL	T1 A	LT2	
	weirh	hru	0	-	-	0		>	-	
	month	nuN	0	null	-	5		>=	-	
	month	null	0	null	-	9		-	>=	
	ACT_TYP	OBJ	OB_NUM	NAME	OPTION	CONST	CONST2	FP	JO	JTCOMES
	irr_deman	nd hru	0	ponding	noloss	90	60	null	У	n

Management.sch

management.	sch: Mana	agem	ent s	schedules	5					
MGT_NAME	NUMB_OPS	3	NUMB	AUTO OP	TYPE	MON	DAY	HU_SCH	OP1	
RIC2 SJV	8	3	3							
		irr	_pudo _RIC2	dle 2_SJV						
			weiı	c100						
	till	3	30	0.00000	chispl	WO	null	0.00000		
	till	4	15	0.00000	offset	hv	null	0.00000		
	fert	4	20	0.00000	22-00-	00	generic	636		
	till	4	25	0.00000	offset	lt	null	0.00000		
	fert	5	1	0.00000	15-15-	00	generic	133		
				-						~ ~ ~ ~ ~ ~ ~

Example water allocation setting

- Two sources (Cha #1 and Aqu #2) available for water allocation
- Two receiving HRUs (#1 and #2) based on the irr_demand in "irr_RIC2_SJV"
- AMOUNT and W_RT are not used
- Water is allocated from the Cha#1 for 65% of the irrigation demand, and then 35% from the Aqu#2.
- If irrigation dema availability in the irrigation source
- If irrigation demand is not met due to limited water
- availability in the channel Aqu#2 is used as a compensating

New Manual Operations in management.sch

OP Name Descriptio !change weir h weir !OP1 – weir na !OP3 – new we !change paddy irrp !OP1 – irrigatio !OP2 – irrigatio !OP3 – object pudl !puddling oper !OP2 – Puddle !planting (or tra Plnt !OP1 – plant na !OP2 – transpla !OP3 – 0 (seedi

	management.sch	: Managemen	t schedules						
n	MGT_NAME	NUMB_OPS	NUMB_AUTO OP_TYPE	MON	DAY	HU_SCH	OP1	OP2	OP3
	paddy	15	0						
			till	3	25	0.000	fallplow	null	0
			weir	4	1	0.000	weir1	null	50
neight			irrp	4	2	0.000	ponding50	sdc	0
			pudl	4	7	0.000	puddle	med_eff	0
ame in weir.res			plnt	5	1	0.000	rice120	tr_rice120	0
eir height for overflow mm			fert	6	27	0.000	elem_p	broadcast	40
			Iert	6	27	0.000	urea	broadcast	90
			weir	1	3	0.000	weirl	null	200
<i>virrigation</i>			irrp	0	11	0.000	ponding_00	sac	0
/ ingation			woir	9	12	0.000	ponding_off	null	0
on type name in irr ons			harv	9	18	0.000	rice120	arain	0
			harv	9	18	0.000	rice120	hav cut lo	w O
on source (cha/sdc/res/aqu/null)			kill	9	18	0.000	rice120	null	0
ID of the irrigation course (0 for nearby one)			till	12	15	0.000	chisplow	null	0
ID of the imgation source (0 for hearby one)	paddy1	26	0						
			irrp	1	31	0.000	ponding off	res	1
			weir	1	31	0.000	weir1	null	0
ration			till	3	25	0.000	fallplow	null	0
tune name in nuddle ons			weir	4	1	0.000	weir1	null	50
type name in puddie.ops			irrp	4	2	0.000	ponding50	res	1
			pudl	4	7	0.000	puddle	med_eff	0
			fert	4	22	0.000	urea	broadcast	100
ransplanting)			fert	4	22	0.000	28_10_10	broadcast	200
amo in plants plt			weir	4	25	0.000	weir1	null	50
ame in plants.pit			irrp	4	25	0.000	ponding50	res	1
anting type name in transplant plt (OP3=1)			plnt	5	1	0.000	rice120	tr_rice120	0
			fert	6	27	0.000	elem_p	broadcast	40
ling) or 1 (transplanting)			iert	6	27	0.000	urea	broadcast	90
			lrrp	9	11	0.000	ponding_off	null	1
			Welr	9	12	0.000	weirl wiss100	null	0
			harv	9	10	0.000	ricel20	grain	0
Irr.ops			liar V	9	10	0.000	rice120	nay_cut_to	0
n neps			woir	11	10	0.000	woirl	null	600
irr.ops: written by SWAT+ editor v2.2.0 on 2023-03-04 15:16 for SWAT+ re			irrp	11	2	0.000	ponding600	res	1
NAME IRR AMT IRR EFF SURO RTO IRR DEP IRR SALT IRR NO3N IRR PO4	paddy2	26	0	11	2	0.000	pondringeoo	105	Ŧ
drip 50 0.9 0 0 0 0 0	padajz		irrp	1	31	0.000	ponding off	agu	0
sprinkler 50 0.7 0.1 0 0 0 0			weir	1	31	0.000	weir1	null	0
subsurface 50 1 0 150 0 0 0			till	3	25	0.000	fallplow	null	0
surface 50 0.9 0.1 0 0 0 0			weir	4	1	0.000	weir1	null	50
ponding50 50 1 0.0 60 0 0 0			irrp		2	0.000	ponding50	aqu	0
ponding200 200 1 0.0 180 0 0 0			pudl	4	7	0.000	puddle	med eff	0
ponding600 600 1 0.0 600 0 0 0			irrp	4	20	0.000	ponding off	null	0
ponding_off 0 1 0.1 0 0 0 0			weir	4	20	0.000	weir1	null	0

Puddle.ops

name	hydcon_mm/h	sed_ppm	orgn_ppm	sedp_ppm	no3_ppm	solp_ppm	nh3_ppm	no2_ppm
high_eff	0.01000	10000	0.00000	800.00000	10.00000	20.00000	1.00000	1.00000
med_eff	0.00000	10000	0.00000	500.00000	10.00000	20.00000	1.00000	1.00000
low_eff	0.15000	10000	0.00000	100.00000	10.00000	20.00000	1.00000	1.00000

Management.sch

Case Studies

- Sin-Gi watershed, South Korea
- Albufera watershed, Spain
- San Juaquin watershed, California, USA

Sin-Gi Watershed

- Forests on high elevation and rice paddies in the valley area (191 km² area)
- Precipitation is influenced by monsoonal climate in June-September (annual rainfall is 1,268mm)
- Average high/low temperature is 29°C and 21°C
- Mean slope is 30%
- Mean elevation is 271m, outlet is at 110m, and mountain top is at 800m

Results – streamflow

Streamflow at the watershed outlet

Flow duration curve

Singi stream.

ance	Paddy module	SCS-CN method
	19.30	33.56
ciency	0.89	0.75
	0.33	0.50
	0.87	0.84

Of the entire flow regimes, the top 20% flow accounts for 75% of the flow volume in the

Albufera Watershed, Spain

THE CASE OF THE ALBUFERA OF VALENCIA LAGOON (SPAIN)

- **STUDY AREA**
 - **HUMAN PRESSURES**
 - URBANIZATION ٠
 - INDUSTRIAL PRODUCTION ٠
 - ٠
 - •
 - ٠ **INTENSIFICATION**)
 - SPECIES AND BIRDS PROTECTION AREA)

SWAT+ PROJECT INFORMATION

Object totals

270	Subbasins
1136	HRUs
352	Channels
272	Aquifers
1	Reservoirs
373	Routing Units
373	Landscape Units
116	Recall (point source/inlet data)
0	Export Coefficients
0	Delivery Ratio

Objective: Evaluate water and nutrients balance

INTENSIVE AGRICULTURAL INPUTS (RICE, IRRIGATED CROPS, CITRUS PRODUCTION) HIDROLOGICAL COMPLEXITY (TWO PRINCIPAL RIVERS, DENSE AGRICULTURAL DRAINAGE NETWORK, RAMSAR WETLAND, HUMAN EXPLOITATION AQUIFER, ETC...) SOCIAL/ENVIRONMENTAL CONFLICTS (CONSERVATIONS VS LANDUSE

NATURAL PARK AND INTERNATIONAL WETLAND PROTECTED AREA (ENDEMIC AQUATIC

Albufera Watershed, Spain

Water Balance and Management Operations

PADDIES RICE IRRIGATION FROM WATER CHANNEL ALLOCATION. FROM MAY TO SEPTEMBER. 120 -180 mm depth

Período	t	Pef	ETc	I	Dr	ΔH	
1 enouo	d			mm		Mm	mm/d
12/05-14/05	3	0,0	18,5		7,8		
15/05-05/06	22	11,4	105,2		91,2		
12/05-05/06	25	11,4	123,7	366,3	366,3 99,0		6,2
06/06-10/06	5	0,0	29,4	0,0	20,7	-50,1	-10,0
11/06-14/06	4	0,0	26,5	46,0	16,6		
15/06-06/07	22	0,6	143,7	351,6	103,0		
11/06-06/07	26	0,6	170,3	397,6	119,6	87,6	3,4
07/07-11/07	5	0,0	30,2	0,0	19,1	-49,3	-9,9
12/07-27/07	16	21,9	96,7	287,5	118,9	93,9	5,9
28/07-18/08	22	0,0	120,6	395,4	262,3	12,4	0,6
12/07-18/08	38	21,9	217,3	682,9	381,2	106,3	
19/08-31/08	13	9,6	54,2	176,3	155,0	-23,3	-1,8
01/0-14/09	14	2,1	55,4	128,2	166,9	-92,0	-6,6
19/08-14/09	27	11,7	109,6	304,5	321,9	-115,3	
12/05-14/09	126	45,5	680,5	1.751,4	982,3	134,2	

- Td: total days
- Pef: efective precipitation
- Etc: rice water consumption •
- I: irragation .
- Dr: drainage
- Δ H: water depth variation

PADDIES RICE IMPOUND FOR ENVIRONMENTAL MESURES FROM WATER AQUIFER AND LAKE ALLOCATION. FROM NOVEMBER TO JANUARY. 400-800 mm around the lake (paddy1) and 200 mm (paddy2).

1	management.sch:	• Management	<pre>·schedulesCRIF</pre>					
2	$\cdots \cdot MGT_NAME \cdots$	·NUMB_OPS··	·NUMB_AUTO · OP_T	YPE · · · MON ·	···DAY	····HU_SCH·	$\rightarrow \text{OP1} \cdot \longrightarrow \cdot \longrightarrow$	$\rightarrow \circ \circ$
3	····paddy····	· · · · 20 · · · ·	•••••••		CRLF			
4		• • • • • • • • • • • •	·····till		· · · 25		\cdots fallplow \cdots	$\cdot \cdot \text{null} \cdot \cdot \cdot \cdot \cdot \cdot \cdot 0 \cdot \cdot$
5		• • • • • • • • • • • •	·····fert	•••••4•	· · · · 22		$\cdots \texttt{urea} {\longrightarrow} \cdots$	••broadcast•••100
6	• • • • • • • • • • • • • • • •	• • • • • • • • • • • •	·····fert	4 .	· · · · 22		···28_10_10	→ broadcast · · · 200
7		• • • • • • • • • • • •	·····weir	•••••4•	· · · 25		···weir1·····	$\cdot \cdot \text{null} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 50 \cdot$
8		• • • • • • • • • • • •	·····irrp	4 .	····25		•••ponding50••	•••sdc••••0••
9	•••••	• • • • • • • • • • • •	·····pudl	4 .	····28	0.000	···puddle····	••med_eff•••••0••
10	•••••	• • • • • • • • • • • •	·····plnt	5 .	$\cdots 1$	0.000	···rice120····	••tr_rice120••0••
11	•••••	• • • • • • • • • • • • •	·····irrp		25	0.000.	•••ponding_off	••null•••••0••
12	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	·····weir		25	0.000.	···weirl·····	··null·····0··
13			·····tert				···eiem_p→···	··proadcast···40·
14			·····iert		27		\cdots urea \longrightarrow	··proadcast···90·
15			weir	· · · · · / ·	····3·		weiri	- null - · · · · · · · · 200
17			irrp		11		· · · ponding off	
18			LITP	9		0.000		
19			well	9		0.000	rice120	
20			harv			0 .000	rice120	hav cut low 0
21							rice120	null
2.2			+i11			0 . 000	chisplow	null
23			stin		0	0 . 000 .	null	null
20			- SKIP			0.000	mall 1997	
24	•••••paddy1••••	• • • • • 22 • • • •	• • • • • • • • • • • • • • • • • • • •		CRLF			
25		• • • • • • • • • • • •	·····irrp	•••••1•	· · · · 31 ·		•••ponding_off	·res····1··
26	• • • • • • • • • • • • • • • •	• • • • • • • • • • • •	·····weir	•••••1•	••••31•	0.000.	· · ·weir1 · · · · ·	null0.
27	•••••	• • • • • • • • • • • •	·····till		· · · · 25 ·	0.000	•••fallplow••••	·null····0··
28	•••••	• • • • • • • • • • • •	fert	•••••4•	· · · · 22 ·		\cdots urea \longrightarrow \cdots	· broadcast · · · 100
29	•••••	• • • • • • • • • • • •	·····fert	•••••4•	· · · · 22 ·		····28_10_10	·broadcast · · 200
30	•••••	• • • • • • • • • • • • •	·····weir	•••••4•	· · · · 25 ·		···weir1·····	• null • • • • • 50 •
31	•••••	• • • • • • • • • • • • •	·····irrp	4 .	25	0.000.	···ponding50···	sdc ···· 0···
32	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	·····pudl		••••28•	0.000.	· · · puddle · · · · ·	med_eff0.
33	• • • • • • • • • • • • • • • • •		·····plnt		1.	0.000	···rice120····	• tr_rice120 • 0 • •
34			·····irrp	6.		0.000	···ponding_off	null 0
35			Welr	·····6·			···weiri	hrandenst 40
30			iert	······································			···e⊥em_p→····	broadcast 40
37			iert			0.000	\cdots urea \longrightarrow \cdots	· proaucast · · 90·
30			welr	7		0.000	weifi wording200	- null - 200
40			in		11	0.000	ponding off	null
40			11rp	9		0.000	ponuting_off	
42			well			0.000	rice120	arain
43			harv	a		0 000	rice120	hav cut low.0.
44			kill	Q.			rice120	nu <u>y_cuc_row.o.</u>
45							weir1	null
46			irrn				ponding600	res
10					2	0.000	Pollaring000	100
47	·····paddy2·····		0		CRLF			
48			·····irrp·	• • • • • • • 1 • • •	• • • 31 • • •	0.00	<pre>•ponding_off • • •</pre>	null0.
49			·····weir·	• • • • • • • 1 • • •	•••31•••	· · · 0.000 · · ·	•weir1••••n	1110
50			·····till·	• • • • • • • 3 • • •	25	0.00	<pre>fallplow · · · · n</pre>	ull0
51		• • • • • • • • • • • • •	·····fert·	• • • • • • • • • • • • • • • • • • • •	• • 22 • • •	0.000	\cdot urea \longrightarrow \cdot \cdot bi	roadcast100
52		• • • • • • • • • • • • •	·····fert·	• • • • • • • • 4 • • •	• • • 22 • • •	0.000	$\cdot 28_10_10 \longrightarrow \cdot bi$	roadcast200
53		•••••	·····weir·	••••••		0.000	weirlnu	111
54			····irrp·	••••••••		0.000	·ponding50·····	sac····0··
55			pudl-	4 г	1	0.000	·puaaie·····me	
50			·····pint·	· · · · · · · 5 · · · £	24 • • • T • • •	0.000	nonding off	r_ricei20++0++
58			1rrp-	6			ponuing_off n	1]]0
59			well'	6		0.000	elem n	roadcast40.
60			fert		27		$urea \longrightarrow \dots bi$	roadcast
61			·····weir			0.000	weir1	111
62			irrp.			0.000	·ponding200····	sdc · · · · · · · 0 · · l
63			·····irrp·		11	0.000	·ponding off · n	all
64			·····weir·				weir1n	ıll
65			harv.		• • 18 • • •		·rice120·····g	rain0
66			·····harv·		• • • 18 • • •	0.00	•rice120••••ha	ay_cut_low.0
67			·····kill·	• • • • • • • 9 • • •	• • 18 • • •	· · · 0.000 · · ·	·rice120····n	1110
68			·····weir·	• • • • • • • 11 • • •	· · · · 1 · · ·	····0.000···	weir1n	111200
69		• • • • • • • • • • • • •	·····irrp·	•••••11•••	· · · 2 · · ·	0.000	<pre>•ponding200••••</pre>	null0.

Preliminary Results: HRUs 599 and 605

- Paddy rice module faithfully represents the levels that define a rice field
- The balance between weir height (management.sch) and the parameters defining irrigation (IRR_AT and IRR_DEP in irr.ops) is key to properly simulate the water depth
- The surface area of the HRUs must be taken into account in the process of paddy fields impound time

Overview of Central Valley Agriculture

More than 300 crops grown

\$38 billion in production value in 2021

Approximately 75% of the irrigated land in California

17% of the Nation's irrigated land is in the Central Valley

Irrigation Salt Loading Example

185 – 204 TAF

Total applied water in irrigation district: ~ Surface water TDS = 60 mg/L Groundwater TDS = 400 mg/L

Summary

Paddy module in SWAT+ Water balances at the field-scale and watershed-scale improved substantially with the paddy module implementation

Large scale application Representation of complex paddy systems at the watershed scale is still a challenge

Tasks to do with SWAT+ Expand decision tables, calibrate Sin-Gi, Albufera, and San Joaquin, conservation practices, enhance GHGs