

ТЛП

Analyzing hydrological and crop responses to climate change scenarios of an ungauged catchment in Kenya

Pablo Sarmiento¹, Markus Disse¹

¹Technical University of Munich, Germany

SWAT User Conference, Strasbourg July 2024

TUM SEED Project

ТЛП

Study area

- Sand River Basin (SRB) ~ 1435 km².
- Subbasin of the Mara River Basin (MRB) ~ 13750 km²
- Semiarid agro ecological zone.
- Mean annual temperature is 18° C with a mean maximum and minimum of 25° C and 12° C, respectively.
- Two rainy seasons:
 - Long rains: March to May (130 mm/month)
 - Short rains: October to January (75 mm/month)
- Land cover: Range-grassland (53%), Forest (32%) and Cropland (15%)
- Ungauged catchment

ТШ

SWAT+ model set up

Data used

ТШ

	Data type	Dataset	Source
	Temperature, precipitation	W5E5	ISIMIP Repository
	Topography	Digital Elevation Model	USGS Earth Explorer SRTM 1 Arc-Second Global
	Land use	Landsat 8	USGS Earth Explorer
Model set up -	Soil	Soil map	Soil and Terrain Database for Kenya (KENSOTER) version 2.0 and Southern Africa (SOTERSAF). SOTER-based soil parameter estimates by taxo-transfer rules (SOTWIS)
	Crop management	Planting date Fertilizer application	Food and Agriculture Organization of the United Nations (FAO) Crop Calendar Ministry of Agriculture, Livestock, Fisheries and Cooperatives of Kenya
	Evapotranspiration	GLEAM MOD16A2 SSEBop TerraClimate Wapor	https://www.gleam.eu https://lpdaac.usgs.gov/products/mod16a2v006 https://ssebop.users.earthengine.app/view/ssebop-v101 https://www.climatologylab.org/terraclimate.html https://wapor.apps.fao.org/home/WAPOR_2
Model evaluation –	Temperature, precipitation	CHIRPS (precipitation) ERA5 (precipitation) IMERG (precipitation) TAMSAT (precipitation) KMD (precipitation, temperature)	https://www.chc.ucsb.edu/data https://gpm.nasa.gov/ https://research.reading.ac.uk/tamsat/data-access/ https://research.reading.ac.uk/tamsat/data-access/ Kenyan Meteorological Department (KMD)
	Soil moisture	GLDAS Noah V2.1	https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1
Climate change	Climate projections	GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL	Global Circulation Models (GCMs) from ISIMIP Repository

Model set up: Decision tables

Name	Conds	Alts	Acts							
pl_hv_Narok	5	5	5					_		
var	obj	obj_num	lim_var	lim_op	lim_const	alt1	alt2	alt3	alt4	alt5
jday	hru	0	null	-	75	=		-	-	-
jday	hru	0	null	-	214	-	=	-	-	-
jday	hru	0	null	-	289	-	-	=	-	-
jday	hru	0	null	-	61	-	-	-	=	-
year_rot	hru	0	null	-	1.00	-	-	-	-	=
act_typ	obj	obj_num	name	option	const	const2	fp	outcome		
plant	hru	0	plant_corn120	corn120	0.00	1.00	null	y n n	n n	
harvest_kill	hru	0	grain_harv	corn120	0.00	1.00	grain	n y n	n n	
plant	hru	0	plant_ptbn	ptbn	0.00	1.00	null	n n y	n n	
haverst_kill	hru	0	grain_harv	ptbn	0.00	1.00	grain	n n n	y n	
rot_reset	hru	0	reset_1	null	1.00	1.00	null	n n n	n y	

Two cropping seasons:

- 1st Cropping season: Maize from March to August
- 2nd Cropping season: Beans from October to January

Fertilizer a	application:
--------------	--------------

- At planting
- Diamonium phosphate (DAP)

Name	Conds	Alts	Acts						
fert_DAP	2	2	2						
var	obj	obj_num	lim_var	lim_op	lim_const	alt1	alt2		
jday	hru	0	null	-	75	=	-		
jday	hru	0	null	-	289	-	=		
act_typ	obj	obj_num	name	option	const	const2	fp	outc	ome
fertilize	hru	0	18_46_00_fert	18_46_00	130.00	1.00	broadcast	у	n
fertilize	hru	0	18_46_00_fert	18_46_00	20.00	1.00	broadcast	n	у

٦Π

Methodology

ПΠ

Model evaluation: Applied strategies for developing a robust hydrological model for climate change analysis (Krysanova et al., 2020; Schaffhauser et al., 2023):

Climate Change impact assessment:

- Climate change scenarios: SSP126 (low) SSP370 (medium) SSP585 (high)
- Future periods: Near future (2025-2054) and Far future (2070-2099)

Temperature Precipitation

Hydrological responses

Surface runoff

Evapotranspiration

Crop responses

Results

ТЛП

Results: Model evaluation

Statistical metrics results for simulating evapotranspiration products. In bold: basin-scale calibration results using the reference data (W5E5).

	GIFAM	MODIOR	SSEBOR	TerraClimate	NaPOR	GLEAN	MODIOR	SEBOR	TerraClimate	Wator	GLEAN	MODIOR	SEBOR	TerraClimate	WaPOR
W5E5	0.77	-0.30	-0.40	0.66	-1.29	0.77	0.22	0.49	0.66	0.18	-1.60	-15.67	54.90	1.73	24.69
CHIRPS	0.54	0.05	-1.50	0.33	-2.69	0.60	0.29	0.48	0.34	0.19	-6.93	-15.69	84.86	-0.94	43.27
ERA5	0.57	0.26	-2.29	0.33	-3.11	0.57	0.36	0.44	0.37	0.32	0.49	-8.96	99.61	6.96	48.79
IMERG	0.55	-0.14	-1.26	0.28	-2.31	0.68	0.31	0.49	0.28	0.31	-10.03	-18.49	78.71	-4.24	40.34
TAMSAT	-0.46	-0.54	-1.52	0.24	-1.97	0.16	0.21	0.11	0.27	0.08	-15.63	-23.56	67.58	-10.20	13.34
KMD	0.68	0.22	-1.54	0.39	-1.74	0.72	0.46	0.54	0.42	0.33	-5.81	-14.66	87.10	0.26	35.72

Mill. NSL Max. Will. K Mill. Negative /0 101as Max. 10stive /	Min.	NSE	Max.	Min.	R ²	Max.	Min. Negative %	Pbias	Max. Positive %
---	------	-----	------	------	----------------	------	-----------------	-------	-----------------

NSE > 0.50, R^2 > 0.60, Pbias $\leq \pm 25$ % (Moriasi et al., 2007; Thieming et al., 2013; and Kouchi et al., 2017)

Results: Model evaluation

Comparison between GLEAM and simulated monthly evapotranspiration for the calibration (1990-2000) and validation (2001-2010) periods and robustness check results

	NSE	KGE	R ²	Pbias
Calibration	0.78	0.87	0.77	-1.19
Validation	0.68	0.81	0.71	-4.64
Robustness check				
Warm	0.75	0.78	0.75	-1.14
C <mark>old</mark>	0.68	0.85	0.73	-4.53
Wet	<mark>0.7</mark> 3	0.83	0.73	-0.23
Dry	0.7	0.82	0.73	-5.54

NSE > 0.50, KGE > 0.50, R^2 > 0.60, Pbias $\leq \pm 25$ % (Moriasi et al., 2007; Thieming et al., 2013; and Kouchi et al., 2017)

ТШП

٦Л

Results: Outliers check

□ Pbias results of mean annual precipitation and evapotranspiration for the period 1991-2014.

Variable	Reference			Pbias (%)		
		GFDL-ESM4	IPSL-CM6A-LR	MPI-ESM1-2-HR	MRI-ESM2-0	UKESM1-0-LL
Precipitation	KMD	+4.17	+4.61	+5.23	+0.49	+17.5
	CHIRPS	+2.2	+2.64	+3.2 <mark>6</mark>	-1.4	+15.3
	W5E5	-2.48	-2.07	-1. <mark>4</mark> 9	-5.94	+9.97
Evapotranspiration	GLEAM	-1.80	-4.55	<mark>-2.42</mark>	-4.16	+7.13

Pbias ≤ ±25 % (Krysanova et al., 2018)

Comparison of mean monthly precipitation

12

Climate Change Analysis

Results: Temperature

Daily average temperature projections according three climate change scenarios

• SSP370 and SSP585:

- → Temperature increases by 4° C
- → Jan-May and Sep-Dec temperature ranges 23° C to 26° C from 2070

ТΠ

ПΠ

Results: Hydrological responses

Results: Crop responses

D Projected changes of temperature stress, water stress and days to maturity (DTM) for each future period

- Temperature stress:
 - → Overall decrease, more pronounce in far future under SSP370 and SSP585
 - → Optimal T° for maize and beans ~ 25° C
- Water stress:
 - → Less water stress in maize compared to beans under SSP370 and SSP585
 - \rightarrow High variability in far future period

TUT

Results: Crop responses

Crop yield projections. Absolute values are presented in kg/ha, relative changes respect to the historical baseline (1985-2014) are shown as percentage (in brackets).

	Near future (2025 - 205	54)	Far future (20 <mark>70 - 2099</mark>	Far future (2070 - 2099)			
	1st cropping season Maize	2nd cropping season Beans	1st croppin <mark>g season</mark> Maize	2nd cropping season Beans			
SPP126							
Crop yield	1661.7 (+0.6)	530.2 (+2.9)	1683 (+1 <mark>.9)</mark>	<mark>56</mark> 6.5 (+9.9)			
SPP370							
Crop yield	1660 (+0.5)	550.7 (+6.9)	1764.6 (+6.9)	575.3 (+11.6)			
SPP585							
Crop yield	1651 (0)	540.4 (+4.9)	1717.6 (+4)	604.2 (+17.3)			

٦Π

Conclusions

- Higher increases in temperature are expected in the far future period under the medium and high emission scenarios.
- Despite the high variability in projected rainfall, there is an overall increasing trend more pronounce in the far future period. Rainy seasons are expected to onset earlier.
- Decreases in temperature and water stress would lead to higher crop yield. However, analysis on crop responses at specific phenological stages and CO₂ concentrations are recommended.
- Further analysis of possible flood/drought events in the region are recommended.

- Das P., Zhang Z., Ren H.: Evaluation of four bias correction methods and random forest model for climate change projection in the Mara River Basin, East Africa. Journal of Water and Climate Change 1 April 2022; 13 (4): 1900–1919. doi: https://doi.org/10.2166/wcc.2022.299, 2022.
- Dessu, S.B. and Melesse, A.M.: Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya/Tanzania. Hydrol. Process., 27: 2973-2986. https://doi.org/10.1002/hyp.9434, 2013.
- Krysanova, V., Hattermann, F.F., Kundzewicz, Z.W.: How evaluation of hydrological models influences results of climate impact assessment—an editorial. 163, (3), pp. 1121–1141, http://dx.doi.org/10.1007/s10584-020-02927-8, 2020.
- Mbigi, D., Onyango, A. O., Mtewele, Z. F., Kiprotich, P., & Xiao, Z.: Coupled Model Intercomparison Project Phase 6 simulations of the spatial structure of rainfall variability over East Africa: Evaluation and projection. International Journal of Climatology, 42(16), 9865–9885. https://doi.org/10.1002/joc.7868, 2022.
- Philip K. Thornton, Peter G. Jones, Gopal Alagarswamy, Jeff Andresen, Spatial variation of crop yield response to climate change in East Africa, Global Environmental Change, Volume 19, Issue 1, 2009, Pages 54-65, ISSN 0959-3780, <u>https://doi.org/10.1016/j.gloenvcha.2008.08.005</u>.
- Schaffhauser T., Lange S., Tuo Y., Disse M.: Shifted discharge and drier soils: Hydrological projections for a Central Asian catchment, Journal of Hydrology: Regional Studies, 46, 101338, https://doi.org/10.1016/j.ejrh.2023.101338, 2023.

Thank you for your attention

pablo.sarmiento@tum.de

TUM SEED Center: https://web.tum.de/en/seed/home/

Model set up

- Land use cover:
 - \rightarrow Range-grassland (53%)
 - \rightarrow Forest (32%)
 - → Cropland (15%)
- 12 Subbasins, 688 HRUs
- 8 soil types

21

٦Π

CE

ТШ

2. Model evaluation: AET products

AET RS product	Spatial resolution	Temporal resolution	Calibration period	Validation period
GLEAM	25 km	Monthly	1990-2000	2001-2010
MOD16A2	1 km	Monthly	2004-2011	2012-2019
SSEBop	1 km	Monthly	2004-2011	2012-2019
Terra Climate	4 km	Monthly	1990-2000	2001-2010
WaPOR	250 m	Monthly	2009-2014	2015-2019

Precipitation RS product	Description	Spatial Resolution	Temporal Resolution	Provider
CHIRPS	Combines satellite-derived infrared data and station observations	5 km	Daily	Climate Hazards Group at the University of California
IMERG	Combines data from various satellite sources, including passive microwave sensors and infrared imagers, to estimate global precipitation at high spatial and temporal resolutions.	20 km	Daily	NASA's Global Precipitation Measurement (GPM) mission
ERA5	Global atmospheric reanalysis dataset	25 km	Daily	European Centre for Medium-Range Weather Forecasts (ECMWF)
TAMSTAT	Tropical Applications of Meteorology using Satellite data and ground-based observations. Combines data from various sources, including geostationary and polar-orbiting satellites, weather stations, and climate models	4 km	Daily	University of Reading, Climate Division of the National Centre for Atmospheric Science (NCAS) and the National Centre for Earth Observation (NCEO)
KMD	Estimates data from TAMSAT (Tropical Applications of Meteorology using Satellite data and ground-based observations) and CHIRPS (Climate Hazard Group InfraRed Precipitation).	10 km	Daily	The Enhancing National Climate Services (ENACTS) initiative from Columbia Climate School and Kenyan Meteorological Department

AET	ET Scheme
SSEBop	P-M equation. Surface energy balance. Combines ET fractions generated from remotely sensed MODIS thermal imagery, with reference ET using a thermal index approach.
MODIS16A	P-M equation Replacing NDVI with EVI and adding a calculation of soil evaporation to the previously proposed RS-PM method. Soil moisture scalar.
WaPOR	P-M equation
GLEAM	Priestly Taylor ETA = ETo x Stress Module based on Vegetation Optical Depth + Intercepted ET
TerraClimate	P-M formula. Soi water balance approach

٦Π

Results: Sensitivity analysis

□ Ranking of most sensitive parameters for evapotranspiration

Parameter	Description	GLEAM	MOD16A2	SSEBop	TerraClimate	WaPOR
v_awc	Soil available water storage capacity	7	2	7	4	7
v_bd	Bulk density	1	4	2	5	4
v_canmx	Maximum canopy storage	2	1	1	1	1
p_cn2	SCS runoff curve number for soil moisture condition II	5	9	4	3	5
v_cn3_swf	Soil water factor for curve number condition III	4	7	5	9	9
v_epco	Plant uptake compensation factor	6	5	9	7	3
v_esco	Soil evaporation compensation coefficient	3	6	3	2	2
r_k	Soil hydraulic conductivity	9	8	6	8	6
v_perco	Soil percolation coefficient	8	3	8	6	8

"p_" means a percentage change (initial or existing parameter value is multiplied by % given value within the range). "r_" means a relative change (initial or existing parameter value is multiplied by 1+ given value within the range). "v_" means a replacement (initial or existing parameter value is to be replaced by a given value).

 $\begin{array}{ll} \mathsf{NSE} &= 0.64 \\ \mathsf{Pearson} &= 0.82 \\ \mathsf{NRMSE} &= 0.14 \end{array}$

EXCEED Deutscher Akademischer Austauschdienst German Academic Exchange Service

Results: Cross-validation

 $\Pi \Pi$

Results – Climate Assessment

• Mean annual meteorological changes of five GCMs compared to their historical baseline (1985-2014).

- → Most of the GCMs showing a decline in precipitation correspond to the near future period (2025-2054).
- → MMMs show increases in precipitation more pronounce in the far future period: SSP126, SSP370 and SSP585 increase by +11.3%, +26.3% and +29.2%, respectively.
- → GCMs in the SSP126 temperature change ranges between +0.6° C to +1.6° C.
- → GCMs in SSP370 and SSP585 scenarios show temperature increases above 2.5° C.

IUII

Results: Crop responses

Ε

□ Mean monthly responses of leaf area index (LAI) and biomass to climate changes scenarios compared to the historical baseline

27

ТΠ

Thank you for your attention

Muchas gracias!

Asante Sana

