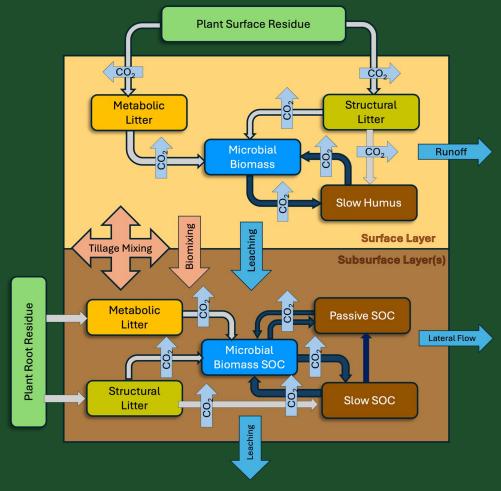


Updates to SWAT+ to Support Carbon Balance

Modeling 2025 SWAT Conference

Fort Collins, Colorado November 18, 2025

COLORADO STATE UNIVERSITY



Carbon balance dynamics for a watershed were updated in the 2012 SWAT codebase configured as the SWAT-C model (Zhang et al 2013, 2018, Liang et al 2022)

SWAT-C carbon balance processes have roots in CENTURY, EPIC/APEX, DSSAT, and DNDC

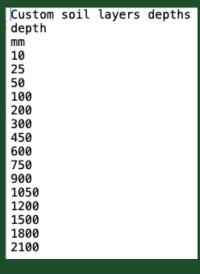
Starting spring 2023, work began to bring SWAT-C processes into the SWAT+ codebase (carbon option 2 in codes.bsn) to support carbon balance assessments on individual cropped farm fields

This brief presentation summarizes model development progress to date, to the point that web services running the updated model support the quantification of soil carbon and other sustainability metrics at scale for Field-to-Market and other users.

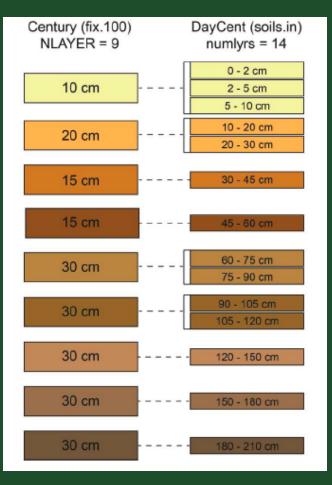
One-HRU Configuration for Field Scale Carbon Balance Modeling

file.cio: \${scenario} (\${date})																	
simulation	time.sim	print.prt	null	object.cnt	null												
basin	codes.bsn	parameters.bsn		,													
climate	weather-sta.cli	weather-wgn.cli	null	\${wpcp:null,%-18s}	\${wtmp:null,%-18s}	\${wslr:null,%-18s}	\${whmd:null,%-18s}	\${wwnd:null,%-18s}	null								
connect	hru.con	null	null	null	null	null	null	null	null	null	null	null	null				
channel	null	null	null	null	null	null	null	null									
reservoir	null	null	null	null	null	null	null	null									
routing_unit	null	null	null	null													
hru	hru-data.hru	null															
exco	null	null	null	null	null	null											
recall	null																
dr	null	null	null	null	null	null											
aquifer	null	null															
herd	null	null	null														
water_rights	null	null	null														
link	null	null															
hydrology	hydrology.hyd	topography.hyd	null														
structural	tiledrain.str	null	filterstrip.str	grassedww.str	null												
hru_parm_db	plants.plt	fertilizer.frt	tillage.til	pesticide.pes	null	null	null	null	null	snow.sno							
ops lum chg init	harv.ops	graze.ops	irr.ops	chem_app.ops	fire.ops	null											
lum	landuse.lum	management.sch	cntable.lum		ovn_table.lum												
chg	null	null	null	null	null	null	null	null	null								
init	plant.ini	soil_plant.ini	null	null	null	null	null	null	null	null	null	null					
soils	soils.sol	nutrients.sol	null														
decision_table	lum.dtl	null	null	null													
regions	ls_unit.ele	null	null	null	null	null	null	null	null	null	null	null	null	null r	ull i	null	null
pcp_path	null																
tmp_path	null																
slr_path	null																
hmd_path	null																
wnd_path	null																

file.cio settings


id	nru: (Sun 0 name hru0001	oct 05 17:32: topohru	topo	2025) hydro hyd0001	soil Otley		lu_mgt his_lum	soil_plant_init soilplant1		rf_stor null	s snow	now 001	field null
hru-data.hru settings													
landuse.lum: name this_lum	(Sun Oct 05 cal_group null	17:32:36 MDT 2 plnt_com this_comm	mgt	cn2 rc_strow_g	cons_prac up_down_slope	urban null	urb_ro null	ov_mann convtill_nores	tile null	sep null	vfs null	grww null	bmp null

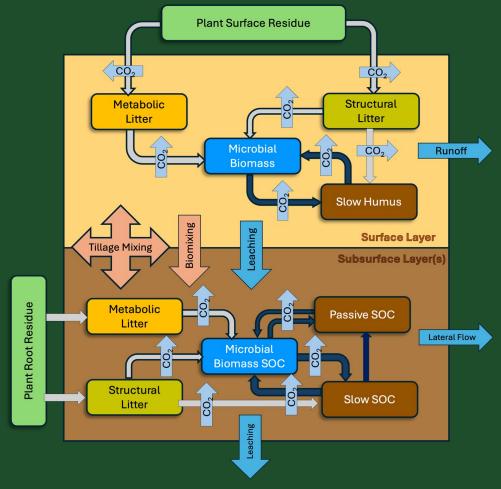
SWAT+ carbon option 2 enables setting custom soil hydrology layer depths in a new soil_lyr_depth.sol input file, here set to 15 layers, as compared to CENTURY and DayCent recommendations; each soil hydrology layer inherits soil properties derived from soil.sol


PET setting in codes.bsn defaults to the Penman-Monteith method, and the cn2 setting to the NRCS curve number method for surface runoff and infiltration

Percolation occurs at Ksat controlled rates when soil water in a layer exceeds field capacity

Lateral flow occurs via a kinematic wave function when soil water in a layer exceeds field capacity

soil_lyr_depths.sol

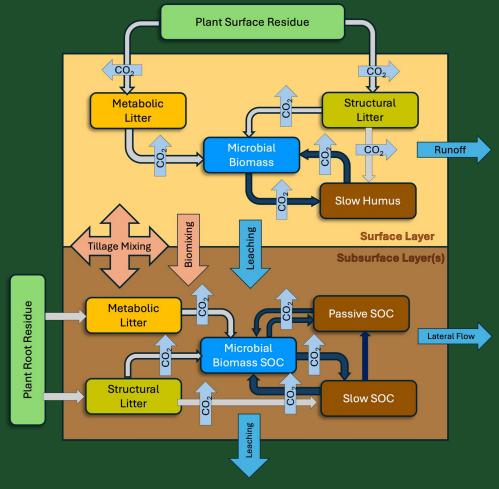

Hartman et al 2020

The cbn_zhang2.f90, nut_organc2.f90, and cbn_rsd_decomp.f90 subroutines contain most of the new carbon option 2 code in SWAT+

The cbn_rsd_decomp.f90 subroutine daily allocates crop residue biomass above and below ground to metabolic and structural litter pools controlled by temperature, soil water, and soil mixing factors, as well as lignin content

Tillage mixes soil, controlled by duration, depth, and disturbance parameters

Depth controlled biomixing occurs when tillage effects have dissipated and the ground is not frozen



For each layer the cbn_zhang2.f90 subroutine simulates microbial action on the metabolic and structural litter pools transforming and fluxing C, N, and P to microbial pool (biomass) while respiring CO2

Microbial C, N, and P then transform and flux to the slow and passive pools while respiring CO2

Slow and passive pool C, N, and P also transform with slow pool to the passive pool and back to the microbial pool, and the passive pool back to the microbial pool, while respiring CO2

A combined factor of tillage/biomixing, soil water, temperature, and oxygen effects adjusts maximum transformation rates to potential rates; then N supply further adjusts potential rates to actual rates

For each layer after precipitation or irrigation events, and soil water conditions permit, the nut_orgnc2.f90 subroutine extracts C, N, and P from the microbial pool into solution to surface runoff, lateral flow, and/or percolation deeper in the subsurface profile

Solution partitioning coefficients control the allocation of C, N, and P to runoff, lateral flow, and percolation

Maximum carbon pool daily transformation/flux rates

hp_rate – passive pool transformation
hs_rate – slow pool transformation
microb_rate – microbial pool transformation
meta_rate – metabolic litter pool transformation
str_rate – structural litter pool transformation
hs rate – slow to passive pool flux rate

CO2 emission rates

depending on sand content)

a1co2 – fraction transformed metabolic and structural litter carbon to CO2 asco2 – fraction transformed slow pool carbon to CO2 apco2 – fraction transformed passive pool carbon to CO2 abco2 – fraction transformed microbial pool carbon to CO2 (calculated for subsurface layers

```
Carbon coefficients used if cswat == 2
File: carb coefs.cbn
# carbdb coefficients
                1st lvr
                            other lyrs
                            1.2e-05
hp rate
                1.2e-05
hs rate
                2.92e-04
                            1.81e-04
microb rate
                0.0164
                            0.02
meta_rate
                0.0405
                            0.0507
str rate
                0.0107
                            0.0134
microb top rate 0.0164
                            0.02
hs_hp
                0.05
                            0.05
# org allo coefficients
                1st lvr
                            other lyrs
a1co2
                0.600
                            0.55
asco2
                0.55
                            0.55
                0.55
                            0.55
apco2
                0.55
                            0.0
abco2
# carbon water partitioning coefficients
prmt 21
                1000.
                0.5
prmt 44
# Length of days that a tillage event will be effective
till eff days 30
# Manure carbon coefficients
            0.5
            0.42
man_to_c
# meta, str, and lignin partioning fractions
                0.85
meta_frac
                0.15
str frac
                0.12
lig frac
# Soil Test Values (sname and depth_mm are required, enter 0.0 for missing values).
# If sand, silt, clay are not 0.0 they must total to 100.0
# data are assumed to be weighted average values down to depth mm
nmbr soil tests 2
          soil name
                         depth_mm bulk_density carbon %sand
                                                                  %silt
                                                                          %clav
soil_test_soil_01-h1
                         150
                                    2.0
                                                         30.0
                                                                   30.0
                                                                           40.0
soil test soil 03-h3
                                    1.6
                                                                           30.0
```

carb.coefs.cbn

Solution carbon partitioning coefficients

prmt_21 – KOC (tendency to adsorb to sediment) prmt_44 – runoff to percolate ratio

Manure carbon allocation coefficients

rtof – ratio of fresh to stable manure man_2_c – fraction manure solids converted to C

Crop/plant residue partitioning fractions

meta_frac – fraction allocated to metabolic litter str_frac - fraction allocated to structural litter lig_frac – fraction allocated to lignin

Soil test results

soil_name – soil sample identifier depth_mm – sample depth in mm bulk_density – sampled bulk density in SSURGO units carbon - sampled organic matter * 0.58 sampled %sand, %silt, %clay (=100)

```
Carbon coefficients used if cswat == 2
File: carb coefs.cbn
# carbdb coefficients
                1st lvr
                            other lyrs
                            1.2e-05
hp rate
                1.2e-05
hs rate
                2.92e-04
                            1.81e-04
microb rate
                0.0164
                            0.02
meta_rate
                0.0405
                            0.0507
str rate
                0.0107
                            0.0134
microb top rate 0.0164
                            0.02
hs_hp
                0.05
                            0.05
# org allo coefficients
                1st lvr
                            other lyrs
a1co2
                0.600
                            0.55
asco2
                0.55
                            0.55
                0.55
                            0.55
apco2
abco2
                0.55
                            0.0
# carbon water partitioning coefficients
                1000.
prmt 21
                0.5
prmt 44
# Length of days that a tillage event will be effective
till eff days 30
# Manure carbon coefficients
            0.5
            0.42
man_to_c
# meta, str, and lignin partioning fractions
                0.85
meta_frac
str frac
                0.15
lig frac
                0.12
# Soil Test Values (sname and depth_mm are required, enter 0.0 for missing values).
# If sand, silt, clay are not 0.0 they must total to 100.0
# data are assumed to be weighted average values down to depth mm
nmbr soil tests 2
          soil name
                         depth_mm bulk_density carbon %sand
                                                                  %silt
                                                                          %clay
soil_test_soil_01-h1
                         150
                                     2.0
                                                         30.0
                                                                   30.0
                                                                           40.0
soil_test_soil_03-h3
                                     1.6
                                                                           30.0
```

carb.coefs.cbn

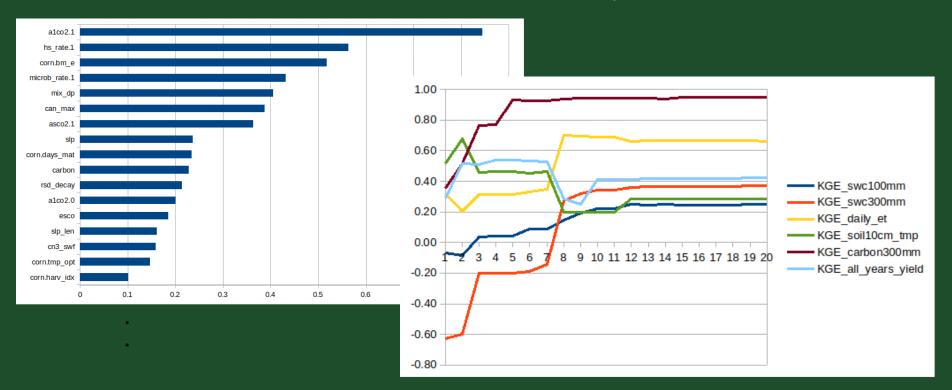
New SWAT+ Carbon Balance Output

Soil C, N, and P Stock

- hru_cbn_lyr total C by layer by day/month/year
- hru_seq_lyr sequestered C by layer by mon/day/year
- hru_cpool_stat - C pool amounts by layer/day
- hru_n_p_pool_stat N and P pool amounts by layer/day

Residue Decomposition, Soil Carbon Transformation, Flux, CO2

```
print.prt: ${scenario} (${date})
nyskip
                             yrc_start
                                            day end
                                                                    interval
            ${dst.%12s } ${vst.%12s } ${den.%12s } ${ven.%12s }
aa_int_cnt
csvout
              dbout
                             cdfout
drop_yld
               matout
                             hvdcon
                                            fdcout
obiects
                                       monthly
                                                        vearly
                                                                    avann
                 ${wb_d,%10s }
hru wb
                                 ${wb m.%10s }
hru_nb
hru ls
hru_pw
                                ${pw_m,%10s } ${pw_y,%10s }
hru_cb
```


print.prt

- hru_cfflux_stat C, N flux and CO2 emission among pools by layer/day
- hru_org_trans_vars Potential C pool transformation by layer/day
- hru_org_trans_vars Actual C pool transformation amount by layer/day
- hru_org_allo_vars Fraction C allocated among pools and to CO2 emission by layer/day

Factors Affecting C, N, and P Pools and Fluxes

- hru_carb_vars tillage, temperature, soil water, oxygen, and combined effects by layer/day
- hru_org_ratio_vars N/C ratios of microbial, slow, and passive pools by layer/day

SWAT+ Carbon Balance Calibration/Validation

Field study datasets (GraceNet, Other)

SW Minnesota; E Nebraska; NW/NE/NE/C/SW/SC/SE Iowa; NW Indiana

SWAT + Model Web

Services

http://csip.engr.colostate.edu:8088/csip-soils/d/swatplus/2.0

Resolve soils.sol input file

http://csip.engr.colostate.edu:8088/csip-climate/d/gridmet/2.0

Fetches data from GridMet for SWAT+ weather input files

http://csip.engr.colostate.edu:8088/csip-swatplus/m/swatplus/4.0

Runs SWAT+ simulation for soil component

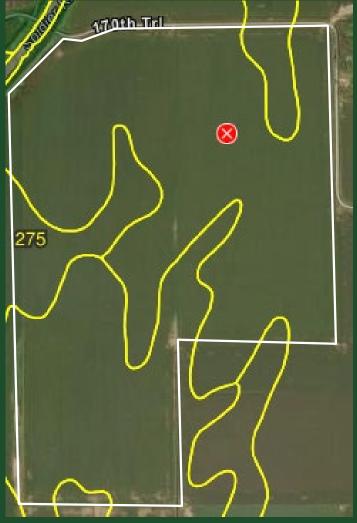
http://csip.engr.colostate.edu:8088/csip-swatplus/m/swatplus/4.1

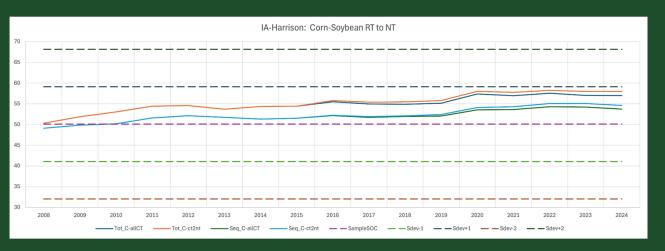
Runs one or more SWAT+ simulations for farm field

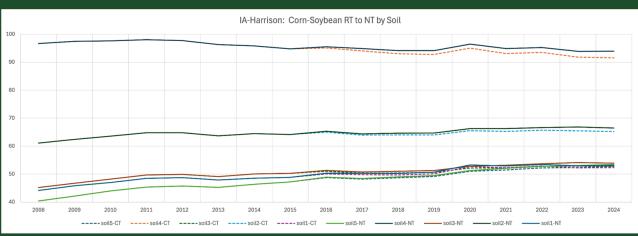
http://csip.engr.colostate.edu:8088/csip-swatplus/m/swatplus-cal/4.1

Runs SWAT+ calibration simulations

Sessions		<u><<</u> < 1	- 25 (of 57844) ≥ ≥≥	Archives at 2025-10-12 22:05:04				
suid	status	req IP	archived at	expiration	service	files		
5ba912d3-a5eb-11f0-afdc-6ff5afe36800	Finished	129.82.21.91	2025-10-10 09:11:15	2025-10-11 09:11:15	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b0e3302-a5eb-11f0-955a-c1330da0cb96	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	del	
5b0e325f-a5eb-11f0-afdc-67d4ee8abadd	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b0e5a14-a5eb-11f0-955a-8341a9c23a22	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	del	
5b0e3260-a5eb-11f0-afdc-43cb266ecada	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b0e5a15-a5eb-11f0-955a-471e2321c82e	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b0e5972-a5eb-11f0-afdc-41f1bbe152ef	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b0e5a13-a5eb-11f0-955a-3f02625130b9	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b0e5971-a5eb-11f0-afdc-837ca9be8284	Finished	129.82.21.91	2025-10-10 09:11:14	2025-10-11 09:11:14	http://csip.engr.colostate.edu:8084/csip-swatplus/m/swatplus/4.0	download	<u>del</u>	
5b04bd21-a5eb-11f0-955a-19a2da0cd2f9	Finished	34.238.177.11	2025-10-10 09:11:13	2025-10-11 09:11:13	http://csip.engr.colostate.edu:9084/csip-swatplus/m/swatplus/4.1	download	del	


SWAT + Model To-Do List for Supporting Sustainability Metrics


- Updated manure carbon dynamics
- Ongoing regional calibration/validation
- Flooded crop (rice) carbon dynamics (Jeong et al 2025)
- N2O emissions (Liang et al 2023)
- Add more tillage, soil water, and temperature factor methods options (Liang et al 2022)
- New crop parameter sets for plants.plt (e.g. safflower)
- Align WEPP water erosion and WEPS wind erosion model simulation periods to 2008-2025 cropping sequences


IA-Harrison Example

- 67 SOC (30cm)
 samples, 23-76
 Mg/ha, mean 50
 Mg/ha
- 5 SoilComponents
- Corn/Soybean cropping sequence

