EST. 1870

WAR STUSTING IN 19 19 19

Bridging Science and Practice: Watershed Modleing for Nutrient Mitigation in Ohio's Agricultural Watersheds, USA

Asmita Murumkar, Ecosystems Services Field Specialist,
Department of Extension
Department of Food, Agricultural and Biological Engineering

Outline

- Watershed model (Soil and Water Assessment Tool; SWAT)
- ☐ High Resolution Watershed models
 - Remote sensing
 - Conservation practices improvements
- Water quality benefits of conservation practices
 - ☐ Single Practice Sensitivity
 - Bundled Practices Impact
- **☐** Watershed Modeling projects

WLEB watershed modeling team

The Ohio State University

- Jay Martin
- Asmita Murumkar
- Vinayak Shedekar
- Mahesh Tapas
- Lorrayne Miralha

University of Wisconsin-Madison

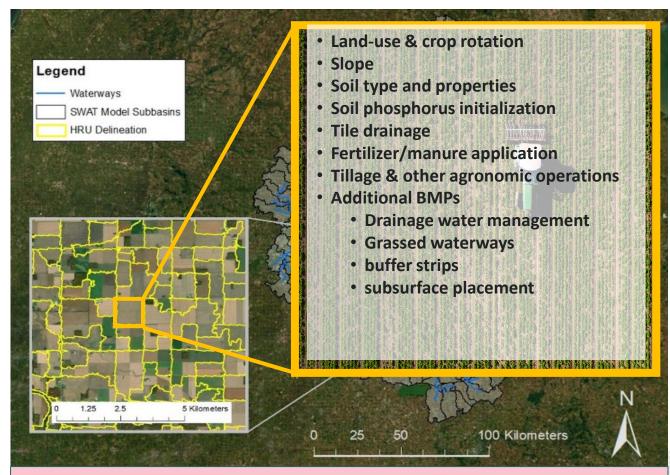
- Margaret Kalcic
- Anna Apostel
- Lourdes Arrueta

Funding sources:

Lake Erie Commissior

University of Toledo

- Kevin Czajkowski
- Kimberly Panozzo
- Ishfaq Rahman


USDA-ARS

- Kevin King
- Maumee Watershed Modeling Stakeholder Advisory group

Maumee field-scale SWAT model

- ☐ Near-field level resolution:
 - ~170 acres field
 - □ Some spatial refinement of management practices (e.g. manure near CAFOs; county-level fertilizer sales)
- Calibration
 - □ Calibrated at the watershed outlet as well upstream gauges
 - Validate at field level

Published: Apostel et al. (2021) "Simulating internal watershed processes using multiple SWAT models," *Science of The Total Environment*

High-resolution watershed model development

Remote sensing data

- Crop rotations
- Cover crops
- Tillage practices
- Buffer strips

Soil Test Phosphorus

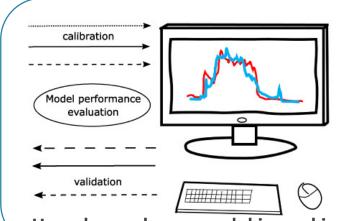
County level STP distributions used to apply a heterogeneous representation of soil P values

Manure

- Locations of permitted and unpermitted facilities
- Kast et al 2020 allocations
- Applied according to STP values and crop needs

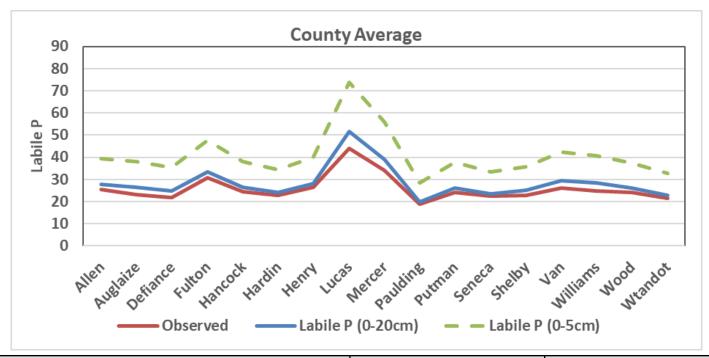
Inorganic Fertilizer

- County level rates of N and P scaled to meet plant needs
- Applied to field where manure does not meet plant needs


Additional linked practices

- Subsurface application
- Tile drainagespacing
- Wetland locations

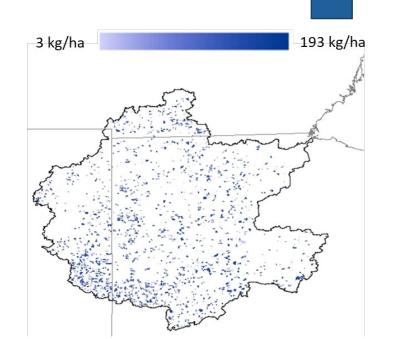
Maumee River Watershed


Field-scale SWAT Models

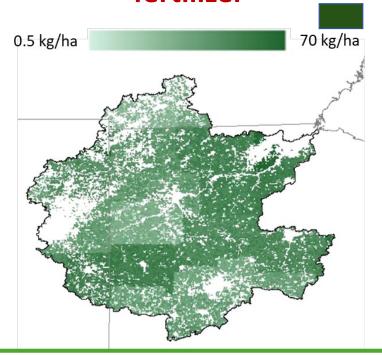
How do you know model is working?

— Soil Test Phosphorus (STP)

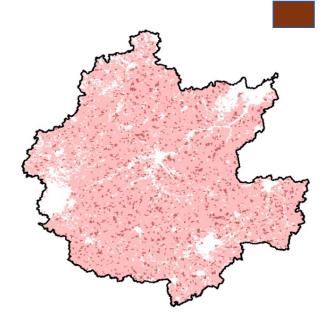
• County data distributions resampled to focus on average, not extreme values.



Dayton et al. 2020


		0-20 cm	0-5 cm	6-20 cm
Labile P (mg P / kg soil)	Observed	26		
	2021 Model	20	25	15
	Current Model	25	35	20

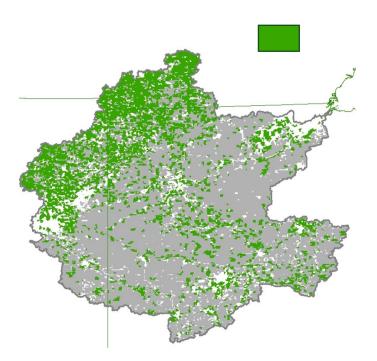
— Nutrient application


Phosphorus from manure

Phosphorus from inorganic fertilizer

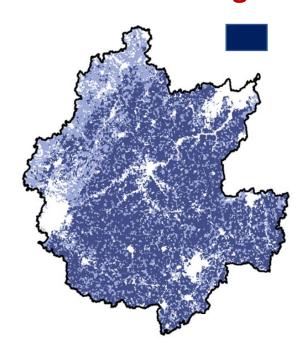
Subsurface fertilizer application

~20% of fields receive manure at least once in 3 years

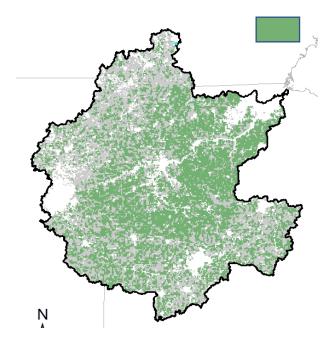

Based on STP value at a field

- 0-25 ppm: Over application
- o 25-50 ppm: applied at removal/maintenance range
- >50 ppm: no application

10% of cultivated row crop fields


Additional linked data

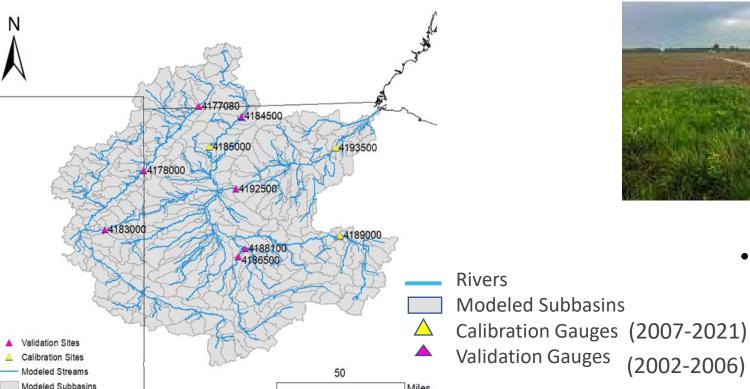
Wetlands


- National Wetland Inventory Data
- N and P removal efficiencies based on regional literature review of wetland effectiveness

Tile-drainage

- ~62% of total watershed area
- Tile spacing (ft): 30, 35, 40, 50, 60
 based on Ohio drainage guide

Edge-of-field filter strips

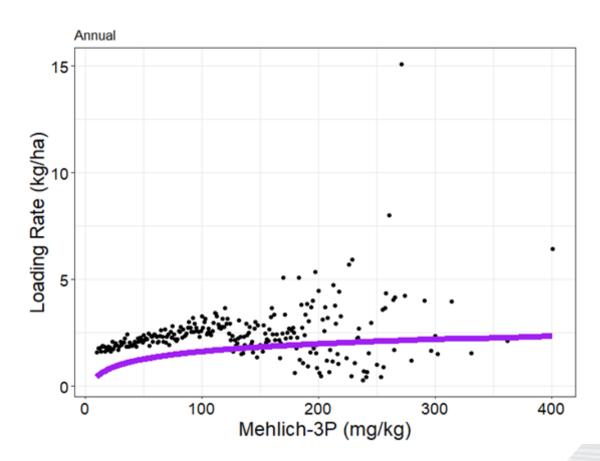


- Remote sensing-based location and size
- More realistic and lower efficiencies

How do you know model is working?

Calibration and validation periods

□ Validation of edge-of-field practices


Source: USDA-ARS, Columbus

Field-level validation:

- USDA-ARS Soil Drainage Research Unit (Williams et al., 2016)
- OSU edge-of-field monitoring networks (Brooker et al., 2021)

Calibration and Validation: Results

- Watershed outlet: Very good performance
- Other calibration gages: Good performance for discharge, mixed nutrient performance
- Validation stream gages: Good performance for Discharge and DRP, mixed TP performance
- Edge-of-field: Reasonable predictions (significant correlation relationship, tendency to over-predict)

Predicting benefits of conservation practices

- Water quality benefits of conservation -
 - Practice sensitivities
- Bundled Conservation practices i.e.
 - Stacking of practices

Conservation Practices

Tri-state Recommended Application Rates

Subsurface Nutrient Application

Manure Incorporation

Cover Crops

Drainage Water Management

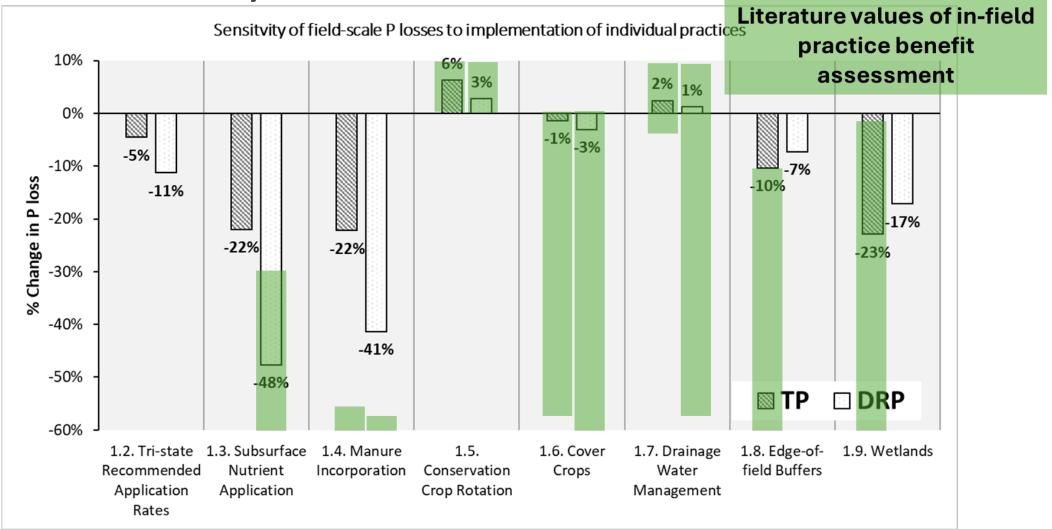
Edge-of-field Buffers

Wetlands

P-filters

Scenario Development

- Scenarios developed with guidance from Ohio agency personnel to evaluate individual practices and Joyce mitigation program implementation
- ☐ Reviewed by the **Maumee Watershed Modeling Stakeholder Advisory group**


Sensitivity Scenarios: Implementation

Management Practice	Implementation	% of all row crop acres in model		
		Baseline	Scenario	
Tri-state Recommended Application Rates*	N and P rates modified to follow application guidance based on soiling testing	50%	100%	
Subsurface Nutrient Application	Broadcast fields targeted and modified to receive subsurface inorganic nutrient application	10%	23%	
Manure Incorporation	Liquid manure immediately incorporated after application	12%	18%	
Cover Crops	Winter rye planted over winter following a corn or soybean harvest	10%	30%	
Drainage Water Management**	Depth to tile drain modified throughout year following management guidance	1%	9%	
Edge-of-field Buffers**	EOF buffers added at varying efficiencies	35%	49%	
Wetlands**	Wetlands implemented on tile drained fields with the guidance of 1.5% of field being removed from production and 25% of tile effluent would be routed through wetland	20%	30%	

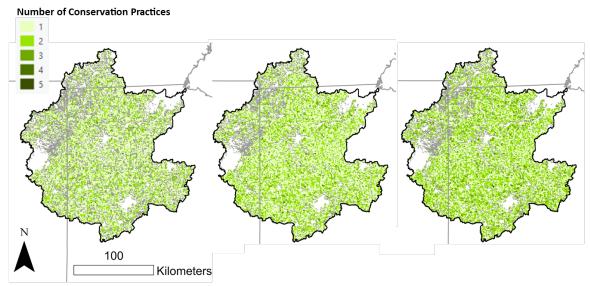
^{*}Resulted in 5% reduction in P fertilizer across watershed, 10% on changed fields

^{**}Percentage of acres impacted by practice

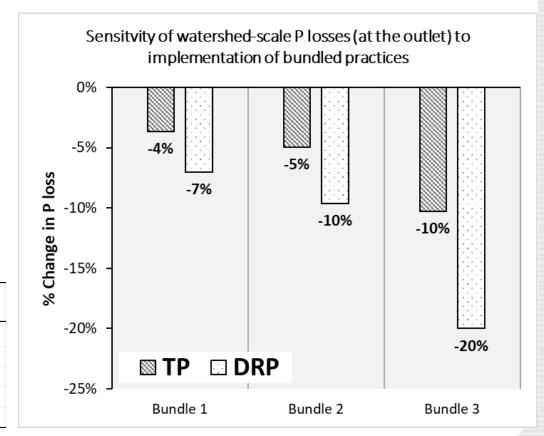
Sensitivity Scenarios: Field-scale

Bundled Scenarios: Implementation Bundled practice scenarios

Management Practice	Baseline	Bundle 1	Bundle 2	Bundle 3
Tri-state Recommended Application Rates	50%	87%	100%	100%
Subsurface Nutrient Application	10%	16%	19%	36%
Manure Incorporation*	12%	14%	15%	20%
Cover Crops	10%	17%	19%	39%
Drainage Water Management**	1%	2%	3%	4%


7570 7570	% acres impacted above baseline	-	53%	73%	116%***
-----------	---------------------------------	---	-----	-----	---------

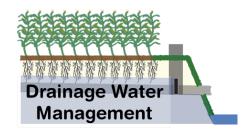
^{*}Manure percentages calculated as a percent of manure fields

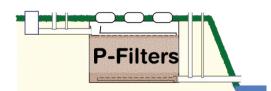

^{**}Drainage water management implemented as a number of structures

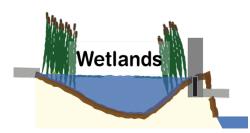
^{***}Values over 100% possible because of stacked practices

Bundled Scenarios: Implementation

Number of Practices	Bundle 1	Bundle 2	Bundle 3
1	1,792,521	1,891,491	1,571,424
2	750,705	1,118,051	1,275,605
3	101,848	214,465	351,885
4	5,552	13,860	37,135
5	0	298	1,861




—— Sensitivity Results: Key Findings


■ Better bank for a buck

- Oconsideration 1: Increase adoption rates of the most effective practices.
 - Greater and targeted adoption = greater impact.
- Consideration 2: Implement strategic land management if possible.
 - o Implementing the most effective practices on strategic acres (areas with greater P runoff), if they can be identified, showed greater impact than random adoption.

Evaluating dynamics of Legacy P field nutrients

Practice identification

Drainage water management P-filter

Wetlands

Combined practices

Criteria for BMPs

- DWM criteria (STP>100 mg/kg, Slope < 1%, Poorly drained soils)
- P-filter (STP>100 mg/kg, % Silt > 40)
- Wetlands (STP>100 mg/kg, Hydric soils)

Scenarios (Current and Future Climates)

- ☐ Single practice
- ☐ Stacking of practices
 - ☐ Two practices
 - ☐ Three practices

Team

- ☐ The Ohio State University
- ☐ University of Wisconsin-Madison

Funding: ODHE HABRI

Pilot Watershed Project 2023-2028: Can we move the needle in a small watershed to demonstrate how to reach target P reductions?

Practice Implementation

70% of the watershed in conservation practices aimed to reduce dissolved P loads

First year adoption of Subsurface P Placement = 24% of acres Second year tracking towards greater adoption rates

Practices include:

- Voluntary nutrient management plans
 P removal structures
- Subsurface P placement
- Manure incorporation
- Overwintering Cover
- Drainage water management

- Blind inlets
- Wetlands
- Buffers

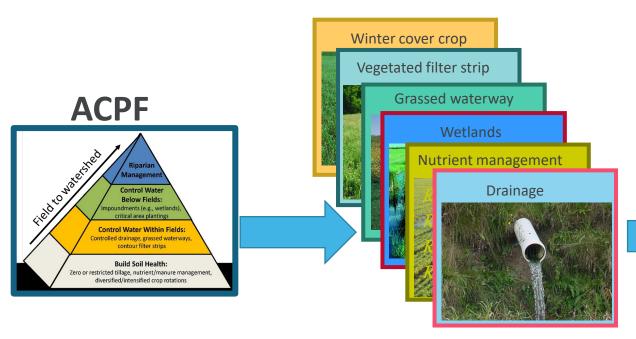
Three Research Areas:

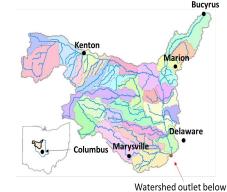
Social Science

Measure the effect of interventions on drivers of adoption and persistence

Water Quality

Measure the effect of practices on reducing loads from field to watershed


Soil Health


Investigate changes in soil health resulting from practice implementation PI Jay Martin, The Ohio State University

High-resolution watershed model: Upper Scioto

River Watershed

O'Shaughnessy dam
Field-scale SWAT+

Test outcomes

Overall reductions of TP, DRP, TN, sediment

Implement practices

Project Funders and Collaborators: Upper Scioto River Watershed

Current Investment \$1.75M

Modeling team members:

Asmita Murumkar

Jay Martin

Margaret Kalcic

Mahesh Tapas

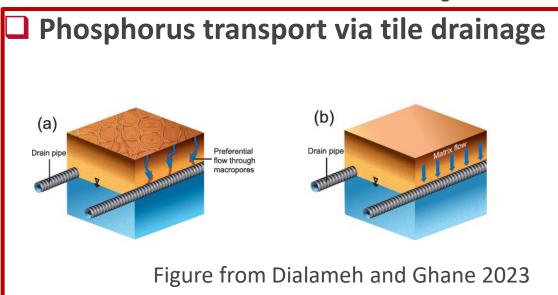
Haley Kujawa

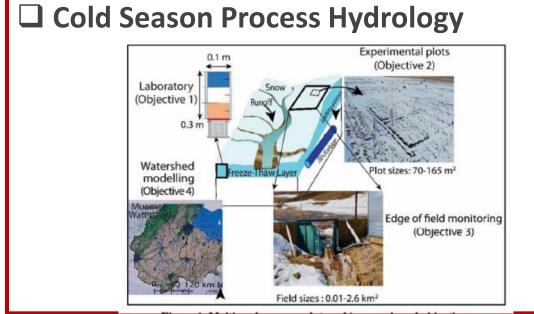
Emmitt Higgins

Brian Brandt

Mark Wilson

Stay toned

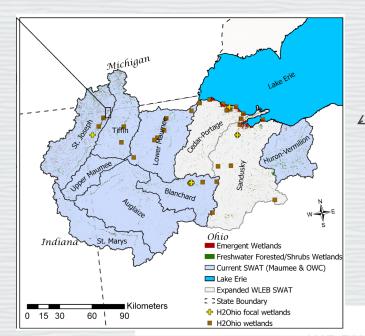

Webpage-Story Map


https://farmland.org/project/usrw/

SWAT Model Improvement Projects

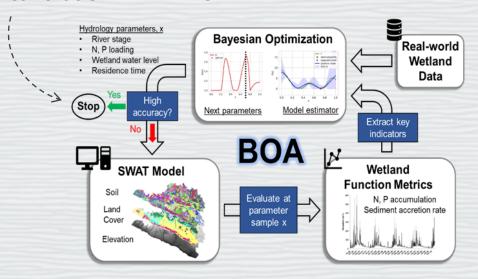
☐ Soil Health

-16	26	an	n


- ☐ The Ohio State University
- ☐ University of Wisconsin-Madison
- ☐ USDA-ARS (Columbus)
- ☐ USDA-ARS (National Soil Erosion Research Laboratory)

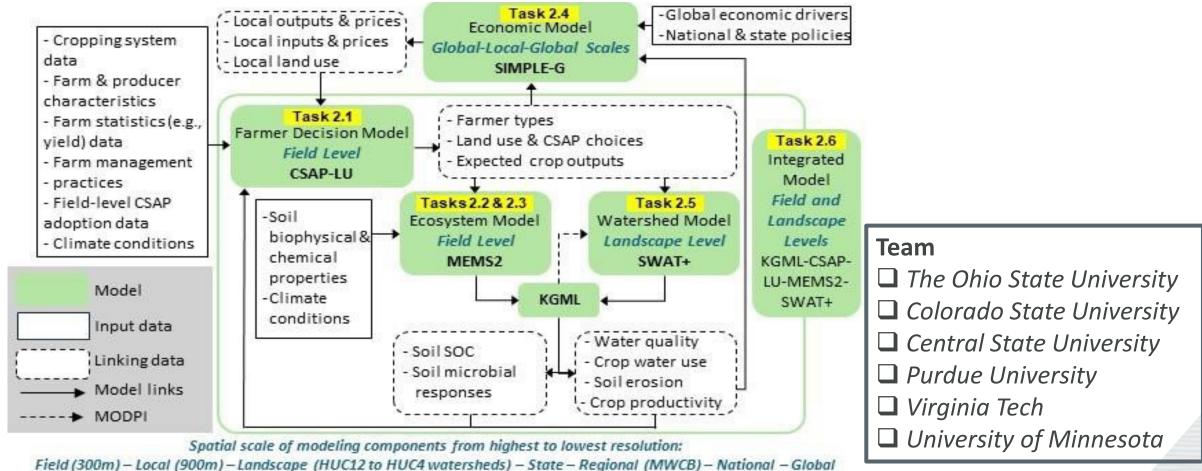

Enhancing ecosystem models to guide selection and placement of wetlands in the Western Lake Erie Basin

CFAES


- (1) Identify wetland locations throughout WLEB and investigate temporal patch dynamics.
- (2) Update the Maumee watershed field-scale **SWAT to the SWAT+** version.

(3) Compile a whole WLEB SWAT+ model

(4) Use data-driven optimization for automatic calibration in WLEB SWAT+



- (5) Work with a **stakeholder advisory group to evaluate wetlands** for optimal nutrient reduction under current and projected conditions.
- (6) Expand a web-based graphical user interface for application of SWAT+ to test wetland designs under current and future climate scenarios.

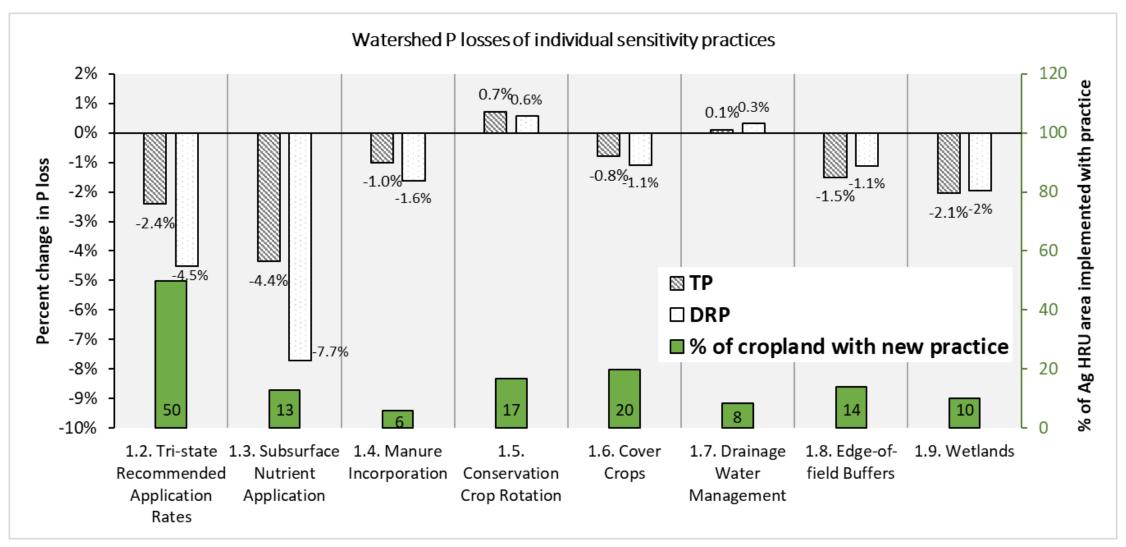
HABRI-ODHE 2024 - 2026

Team: Paulson, Bohrer, Miralha, Murumkar, Kalcic

Enabling Farmer Discovery and Managing Critical Tradeoffs with the Emergence of National Scale Carbon Markets

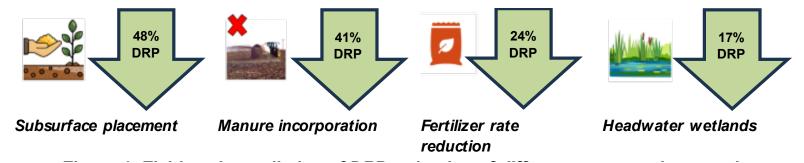
Thank you!

Asmita Murumkar, PhD,


Ecosystems Services Field Specialist

Department of Extension

Department of Food, Agricultural and Biological Engineering


murumkar.1@osu.edu

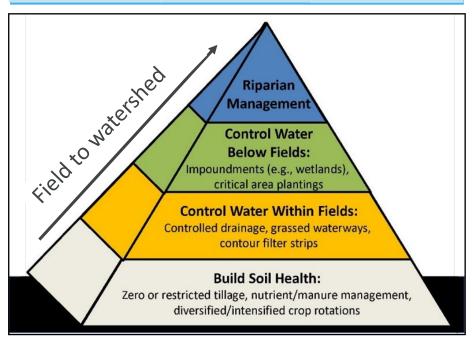
Sensitivity Scenarios: Watershed-scale

— Sensitivity Results: Key Findings

☐Field-scale:

- At the watershed scale, roughly doubling the implementation of multiple conservation practices (from pre-2018-2019 levels) is predicted to reduce both, dissolved reactive P (DRP) and total P (TP) loading at the watershed outlet by 20% and 10%, respectively.
- ☐ Results reinforce most effective conservation practices.
- Subsurface Placement, Manure Incorporation, Fertilizer Rate Reduction, Headwater Wetlands.
- Co-benefits (e.g. DWM and cover crops help reduce nitrate losses).

Agricultural Conservation Planning Framework (ACPF)


ACPF toolboxes for site-specific precision conservation planning

Within field

Below field

Riparian

• Identifies locations suitable for best management practices (BMPs) to address soil and water quality needs.

- Recognizes that farms and watersheds are unique and heterogeneous.
 - Identifies localized areas of potential resource concern.
 - Sites suitable, potential BMPs in in-field, edge-of-field, and downstream locations.

Conservation pyramid for ACPF

——Model Scenarios — Bundled Scenarios

Bundled scenario practice selection and adoption rates:

☐ Conservation practices were selected using H2Ohio program adopted practices as guidance Based on H2Ohio program current adoption acres, a 5% yearly increase in acreage was extrapolated to the entire watershed area. ☐ The acres among practice were distributed according to trends in practice adoption distribution ☐ Total increased acres were implemented in the scenarios assuming a 5, 10 and 20-year steady state adoption rate of 5%. ☐ Run for climate years 2008-2021 Nutrient and discharge outputs produced for Maumee outlet

SWAT model

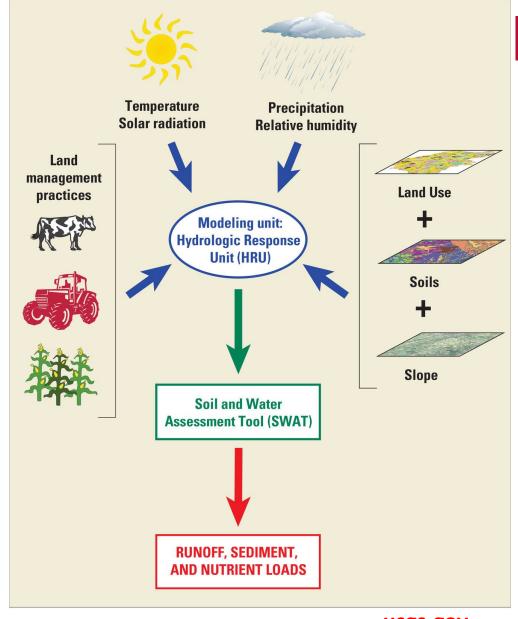
Can predict water quantity, water quality (Nitrogen, phosphorus, sediment)

SWAT takes data inputs:

Streams

Topography

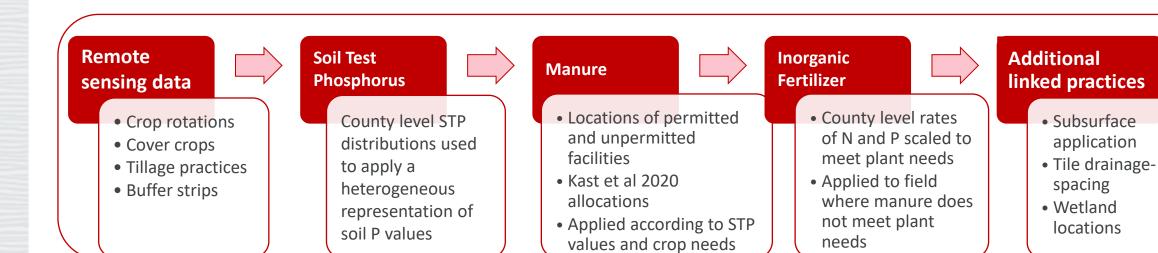
Soils


Land use

Land management

Climate

SWAT can test scenarios:


Conservation practices Targeting/prioritization

CFAES

High-resolution watershed model development

Key Message

- ☐ Models like SWAT are a critical tool in the evaluation and adaptive guidance of programs targeting land management improvements.
- ☐ When guiding policy, effectively validating at the implementation scale is needed.

☐ Guided stakeholder modeling helps assess true policy concerns while uncovering innovation needs within the model.