

HYDROLOGY & HYDRAULIC ENGINEERING DEPARTMENT

An Open-source Python script to prepare the SWAT+gwflow inputs,

calibrate and post-process

Estifanos Addisu Yimer, José Pablo Terán Orsini, Alula Girmay Kebedew, Lorenzo Villani, Alitane Abdenabi, Ammari Zakaria, Anandita Agarwal, Brian Omondi Oduor, Ann van Griensven, Jiri Nossent, and Ryan Bailey

June 2023

Introduction and Problem statement

Temperature change in the last 50 years

-1.0 -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C -1.8 -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

Introduction and Problem statement

Home > My Europe > Europe News > Belgian farmers struggle as drought and rising costs hit

M.europe Europe News

Belgian farmers struggle as drought and rising costs hit

Introduction and Problem statement

Why SWAT+gwflow?

- 1. Cumbersome code modification is not required
- 2. Physically based and distributed model \rightarrow contrary to the standalone SWAT+ model
- 3. Computation time is reduced
- 4. Easy to use \rightarrow scripts to prepare the inputs and tutorial on how to develop the model exists.

But the python script used to prepare the inputs requires licensed package (Arcpy)

Packages used for the development

```
from osgeo import gdal,ogr,osr
from shapely import geometry
import pandas as pd
import geopandas as gpd
import numpy as np
import math
import matplotlib.pyplot as plt
from datetime import datetime
import os
import shutil
from matplotlib scalebar.scalebar import ScaleBar
import matplotlib.patches as mpatches
```


Methodology

- Used SWAT+gwflow to model the catchments

Data	Source	Resolution		
	For SWAT+ model setup			
DEM	Accessed: 1 February 2022, https://viewer.nationalmap.gov, U.S. Geological Survey, National Elevation Data	30m		
Land use	Accessed: 1 February 2022, https://remotesensing.vito.be/, VITO	10m		
Soil map	Accessed: 1 February 2022, https://www.fao.org/land-water/en/			
	For SWAT+gwflow model setup			
Aquifer thickness (cm)	Accessed: 10 March 2022, https://soilgrids.org/	250m		
Permeabili ty zones (m/day)	Accessed: 10 March 2022, https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.568 3/SP2/TTJNIU	Vector polygon		

Methodology

13

Methodology

Catchment name	Number of zones	Number of major zones	
Klein Nete	15	7	
Grote Nete	11	5	
Dijle and Zenne	49	8	
Demer	31	6	
Dender	27	4	
Upper Scheldt	165	10	
Leie	107	13	

Case study area 1

1. Calibration and validation at catchment outlet

	For the main gauging station			
	Calibration		Validatio	on
Catchment name	Monthly	Daily	Monthly	Daily
Klein Nete	0.9	0.8	0.8	0.7
Grote Nete	0.9	0.8	0.8	0.7
Dijle and Zenne	0.8	0.7	0.8	0.7
Demer	0.9	0.8	0.8	0.8
Dender	0.9	0.6	0.9	0.7
Upper Scheldt	0.9	0.8	0.9	0.8
Leie	0.7	0.6	0.8	0.7

2. Validation using other gauging station data

		Based on additional gauging station		
	Calibration		Validation	
Catchment name	Monthly	Daily	Monthly	Daily
Klein Nete	*	*	*	*
Grote Nete	0.5	0.5	0.8	0.7
Dijle and Zenne	*	*	*	*
Demer	0.8	0.8	0.9	0.8
Dender	0.7	0.5	0.9	0.8
Upper Scheldt	0.7	0.6	0.8	0.6
Leie	*	*	*	*

Case study area 1: Kleine Nete watershed

Science of The Total Environment Volume 885, 10 August 2023, 163903

The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium

Estifanos Addisu Yimer^a on Fatima-Ezzahra Riakhi^a, Ryan T. Bailey^b, Jiri Nossent^{a c}, Ann van Griensven^{a d}

Show more \checkmark

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.scitotenv.2023.163903 7

Under a Creative Commons license 🗷

Get rights and content **>**

open access

Highlights

- Water drained from agricultural fields is substantial.
- Coupled surface-groundwater modeling approach using SWAT+gwflow

Case study area 2 (Morocco 1)

2. Calibration (monthly)

Case study area 3 (Spain)

Case study area 4 (Denmark)

Case study area 5 (Morocco 2)

Conclusions

1. Open source packages made our life easy

2. Wide variety (catchment size, climate, land use, etc) of watersheds were able to be represented by the model

3. Post processing is still difficult, hence, further effort is needed

6

HYDROLOGY & HYDRAULIC ENGINEERING DEPARTMENT

SWAT+gwflow post processing?

Thank you for your time