2025 SWAT Conference

Evaluating the impact of land use on soil organic carbon spatial distribution by SWAT-C model – a case study of the Wu River Basin, Taiwan

Guan Zhou Lin & Li-Chi Chiang

Department of Bioenvironmental System Engineering National Taiwan University, Taiwan

The impact of climate change

- Over the past two decades, CO₂ emissions have shown a steady upward trend, exerting increasing pressure on the global climate and pushing temperatures closer to the 1.5 °C threshold.
- Controlling carbon export is crucial for mitigating climate change.

Liu et al., (2024)

The carbon cycle and organic carbon

1/

Barbier et al.(2011)

- Land ecosystems deliver organic carbon to rivers, but most is respired or stored in soils before reaching the ocean. Soils serve as key carbon sinks, and protecting soil carbon helps reduce emissions.
- In the ocean, terrestrial carbon may be released as CO₂, buried, or moved to deeper waters. Minimizing carbon loss and enhancing soil carbon storage are vital for climate mitigation.

DOC export pattern in the world

 Asia is identified as one of the major contributors to global riverine DOC export. The seasonal monsoon-driven hydrology further enhances DOC transport during peak flow periods.

 This highlights the critical role of Asian rivers in the global carbon cycle and underscores the need for regional monitoring and carbon management strategies.

POC export pattern in the world

- The previous study shows that global POC yield varies widely, with the highest values in tropical rivers as well as in parts of Southeast Asia and high-latitude regions. The areas have yields over 8 ton/km², mainly due to strong rainfall, erosion, and land use impacts.
- Asia contributes the most POC flux among continents, while the Pacific Ocean receives the largest share of riverine POC.

The importance of model validation for organic carbon dynamics

 However, according to review studies on organic carbon modeling, global simulations of organic carbon often lack validation, which greatly reduces their reliability.

The research propose

€,

Organic carbon estimation

Simulate the organic carbon export and storage SWAT-C application

SWAT-C applied in the subtropical mountainous watershed Land use comparison

Evaluate the organic carbon export by different land use

11/11

7

SWAT-C model development

 SWAT-C is an enhanced model built on the SWAT framework, integrating the CENTURY carbon model to simulate the soil organic carbon

SWAT-C addresses addition, decomposition, transformation, and removal of each SOMresidue pool present in surface and subsurface soil layers.

SWAT-C model development

SWAT-Carbon

- (Qi et al., 2020)
- Soil DOC can be removed from soil layers by surface runoff, lateral flow, and percolation to shallow aquifers.
- The riverine POC processes are derived from the kinetics of POC as described in the CE-QUAL-W2 and QUAL2K models.

9

Study area

• The Wu River Basin is predominantly forested, with forests covering about 51% of the land area. Other land uses include dry lands (16%), orchards (7%), and paddy fields (4%). The midstream and upstream regions are mostly mountainous, with elevations generally above 500 meters.

Monthly Organic Carbon Calibration

- At the Wuxi Bridge station (2010–2017), showed TOC concentrations ranging from 0.6 to 3.8 ppm.
- The calibration and validation result showed a good TOC simulation in the Wu River Basin.

Spatial Distribution of Hydrology in Wu River Basin

Spatial Distribution of Hydrology in Wu

River Basin

Spatial distribution of sediment in Wu River Basin

Spatial Distribution of POC in Wu River

Basin

Spatial Distribution of DOC in Wu River

Basin

21

Mountain forests export high DOC due to strong water retention and moist soils

Spatial Distribution of TOC in Wu River Basin

Spatial Distribution of SOC in Wu River

Basin

Farming activities in downstream areas accelerate the input of biomass into the soil. Downstream soils have lower permeability, allowing organic matter to remain longer in the soil

> 20 Kilometers

Steep slopes and high soil permeability characterize upstream areas

Agricultural activities and landslide lead to significant organic carbon loss through surface runoff

Different Organic Carbon Process in Different Land Cover

	Land use	Bareland	Urban	Forest	Orchard	Pasture	Rice	Sweet potato	
1	POC (kgC/ha)	67	0.9	0.1	9.4	0.01	0.1	32	
	DOC (kgC/ha)	12	15	12	4	7.3	4.5	7.8	
	SOC (ton/ha)	155	220	205	246	225	294	180	0
	 Bare land & sweet potato → high POC export 			 SOC is affected by DOC & POC export 					-

 Urban areas → high DOC export Forest of small mountain watersheds
 → high DOC export high lateral flow

Organic Carbon Export in the World

	Region	Basin	DOC(kg/ha) POC(kg/ha) SOC(kg/ha)			Reference	
	America	Yakima River	4.4	1.1		Fuhrer et al., (2004)	
	America	Maple Creek	2.8	11		Fredrick et al., (2016)	
	China	Haihe River	8.8	-	-		_
Subtropical	China	Yangtze River	8.2	-	-	V_{ap} at al. (2022)	
watershed	China	Huaihe River	10.2	-	-	Yan et al., (2023)	
	China	Yellow River	1.6	-			
Subtropical and tropical	India	Mahanadi River		6.62		Krishna et al., (2023)	
	India	Sabarmati River		6.85			
	Oceania	Sepik River	4.26	14.42	_	Burns et al., (2008)	
watershed	New Zeeland	Buller River	29	14		Carroy at al. (200E)	
	New Zealand	Whangaehu River	16	26		Carey et al., (2005)	
		Li-Wu River	28.6	-	196		
	Taiwan	Chi-Chia-Wan River	· 11.1	-	136	Lee et al., (2019)	
		Bei-Shi River	18.8	-	223		
		Tseng-Wen River	37			Shih et al., (2019)	
		Wu River	10.4	6.9	224	This study	

- The DOC export in Taiwan is comparable to that of subtropical river basins in China, where the annual DOC export ranges from approximately 8.2 to 10.2 kg/ha
- In terms of POC export, the Wu River Basin shows values similar to observed in India and Oceania (tropical river basins), all falling within the range of 6 to 26 kg/ha

Conclusion

Organic carbon export (DOC and POC) is closely linked to land use; slope farming and development areas are major sources of TOC, impacting carbon sequestration

The bare land and dry farming is the main source of TOC, how to reduce the POC export is important for carbon management strategies

The integration of hydrology and carbon simulation provides an effective method for identifying ecosystem service degradation hotspots and supporting climate adaptation strategies in mountainous basins

Thanks!

Does anyone have any questions? gzlin1119@ntu.edu.tw

