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Evapotranspiration (ET) is essential water 
balance process in the tropics: ET/P ≈ 70 - 80% 

Rodell et al. (2015)Global annual-mean fluxes (10³ km³/yr)

P=ET+Q+S
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The drivers for ET are changing
Higher future radiation & temperature

What is the role of AET and LAI in climate 
impact assessment in West Africa?

How much does the future change of AET 
and Q depend on the calibration approach?
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Methodology – 4 key steps
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Bétérou Catchment

Distinct wet/dry 
seasonality

Sub-humid climate

SWAT-T | Satellite-LAI | SWAT2012

We use the SWAT-T by Alemayehu et al., 2017:
 Improved modelling of LAI in the tropics

Variables used for model evaluation:

Variable Time Source Catchment

Q Daily Monitoring network Outlet

LAI 8-daily LAI-GLASS (Liang et al., 2014) Global cover

AET 8-daily FLUXCOM (Jung et al., 2019) Global cover
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We use 3 calibration approaches with different levels 
of complexity to evaluate the role of LAI and AET:

Label Target Objective function

Q Q KGEeff = KGEQ

QL Q, LAI KGEeff = ½ KGEQ + ½ KGELAI

QLA Q, LAI, AET KGEeff = 1/3 KGEQ + 1/3 KGELAI + 1/3 KGEAET

2 forcing data sets:
- W5E5  baseline of ISIMIP future data
- Observed data  cross validation and ROPE 

potential
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Singh (2014)

ROPE = robust parameter estimation

Key features of ROPE algorithm:
- Iterative optimization based on objective 

function, here: KGE

- Robustness: it uses a depth function to 
select good parameters for the next loop

Advantage: multiple sets of parameters that 
are near-optimal (equifinality)

Limit: multiple sets of parameters that are 
near-optimal  no the global optimum

Outcome: 20 sets of equally good parameters
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SWAT-T
catchment scale
SWAT-T by Alemayehu et al., 2017

Climate impacts
from 3 calibration 
approaches

Future climate forcing data from ISIMIP3:
- 5 GCMs
- 3 SSP scenarios
- Evaluation: near and far future
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Optimization with 3 approaches
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ROPE:
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Discharge: W5E5 as 
good as seasonality

The closer to the 
right, the better
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Approaches:
Q only
Q + LAI
Q + LAI + AET

Forcing data:
W5E5
Observed

ROPE:
20 sets

LAI AET

Discharge: W5E5 as 
good as seasonality

LAI: good fits if 
LAI is calibrated

AET: “Q + LAI” can 
also predict AET!

Discharge The steeper, the more 
equal the 20 sets

The closer to the 
right, the better
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Climate impact assessment
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Approaches:
Q only
Q + LAI
Q + LAI + AET

Forcing data:
W5E5
Observed
ISIMIP3

ROPE:
20 sets

What are the impacts of calibration approaches on the AET prediction?

N = 20 in each boxchart

“Q only” underestimates 
annual AET 

“Q+LAI” predicts annual 
AET like “Q+LAI +AET”

AET change prediction:
Q only = 4.03 %
Q+L+A = 11.7 %Annual AET from 20 sets, far future (2070-2100)

Climate impact 
from 20 sets

Mean from        
5 GCM x 20 runs
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Climate impact assessment
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Future changes of discharge and AET

High variability for GCM application e.g., *MPI predicts increase in P, minor increase in T
Discharge less sensitive to calibration approach
Multi-model mean: decrease in discharge, increase in AET

Q only Q + LAI Q + LAI + AET
MPI*

Approaches:
Q only
Q + LAI
Q + LAI + AET

Forcing data:
W5E5
Observed
ISIMIP3

ROPE:
20 sets
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Catchment

Discharge 
station

Catchments are complex systems of fluxes 
dependent on land cover, soil, and 
topography.

In West Africa, AET is a key process, but 
still often neglected in climate impact 
assessment.

Calibration approach matters: 
Predictions with AET vs. no AET:
Differences of 7 % (far) to 9 % (near)

ISIMIP/W5E5 applicable for West Africa, 
but limitations for current state

Less sensitive for discharge prediction
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Thank you for your 
attention!
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