Calibration Complexity and Climate Impacts: The Role of Plants and ET

Fabian Merk, Timo Schaffhauser, Faizan Anwar, Markus Disse

Technical University of Munich, Germany

SWAT User Conference, Jeju Island

June 2025

Motivation and Background

Evapotranspiration (ET) is essential water balance process in the tropics: **ET/P ≈ 70 - 80%**

Evapotranspiration (ET) is essential water balance process in the tropics: ET/P ≈ 70 - 80%

ET is dynamic in space and time Depends on energy (T, rad, wind, rh) Estimated with LAI in SWAT

The drivers for ET are changing Higher future radiation & temperature

Drivers of ET					
River	CC Data	ΔΡ	ΔQ	ΔAET	
Niger bas	sin				
Koulikoro	AMMA-ENSEMBLES (A1B; near, mid, far future)	$+^1$	+	none	
Niger	CMIP5 (RCP2.5, 8.5; end of 21 st century)	o^2	+	none	
Kaduna	CORDEX-Africa (RCP8.5; complete 21 st century)	o	+	_*	
Niger	CMIP5 (RCP2.6, 6.0, 8.5; far future)	o	-	-	
Togo					

inger	(RCP2.6, 6.0, 8.5; far future)	0	-	-	Chawalida et al. (2024)
Togo					
Mono	CORDEX (RCP4.5, 8.5; 2021–2070)	$+^1$	+	none	Houngue et al. (2023)
Ouémé ba	Ouémé basin				
Djougou	REMO (A1B, B1; near future)	-	-	_*	Bossa et al. (2012)
Ouémé	REMO (A1B, B1; near future)	-	-	_*	Bossa et al. (2014)
Upper Ouémé	REMO (A1B, B1; mid future)	-	-	+*	Danvi et al. (2018)
Ghana					
Volta	ECHAM4 (A1B; mid/far future)	-	-	_*	Sood et al. (2013)
White Volta	Ensemble from ECHAM4 & CSIRO (A1FI; near/mid future)	-	-	none	Kankam-Yeboah et al. (2013)
Pra	Ensemble from ECHAM4 & CSIRO (A1FI; near/mid future)	-	-	none	Kankam-Yeboah et al. (2013)
Owabi	CCCMA (RCP2.6, 4.5, 8.5; near future)	-	-	none	Osei et al. (2019)
Pra	CORDEX-Africa (RCP8.5; near, mid, far future)	o	o	none	Awotwi et al. (2021)
Vea	CORDEX-Africa (RCP4.5; near to mid future)	+	-	+*	Larbi et al. (2021)
Burkina I	Faso				

Burkina Faso Tougou CMIP6 (SSP2-4.5, 8.5: near to mid future)

one Yonaba et al. (2023)

Study

Angelina et al. (2015)

Eisner et al. (2017)

Krysanova et al. (2017) &

Animashaun et al. (2023)

Chawanda et al. (2024)

ET ET ET

Merk et al., in preparation

Evapotranspiration (ET) is essential water balance process in the tropics: ET/P ≈ 70 - 80%

ET is dynamic in space and time Depends on energy (T, rad, wind, rh) Estimated with LAI in SWAT

The drivers for ET are changing Higher future radiation & temperature

Lack of ET for climate change in West Africa8 of 15 SWAT studies: no ET at all6 of 15 studies: ET without calibration1 of 15 studies: ET changes with calibration

What is the role of AET and LAI in climate impact assessment in West Africa?

How much does the future change of AET and Q depend on the calibration approach?

Evapotranspiration (ET) is essential water balance process in the tropics: ET/P ≈ 70 - 80%

ET is dynamic in space and time Depends on energy (T, rad, wind, rh) Estimated with LAI in SWAT

The drivers for ET are changing Higher future radiation & temperature

Lack of ET for climate change in West Africa8 of 15 SWAT studies: no ET at all6 of 15 studies: ET without calibration1 of 15 studies: ET changes with calibration

SWAT-T catchment scale

SWAT-T by Alemayehu et al., 2017

Global SA with the Morris method (LAI)

27 parameters of SWAT-T

Climate impacts from 3 calibration approaches

Singh (2014)

Optimization with 3 strategies, **ROPE** algorithm

Bardossy & Singh, 2008

4

SWAT-T catchment scale

SWAT-T by Alemayehu et al., 2017

Climate impacts from 3 calibration approaches

4

Bétérou Catchment

Motivation | Methodology | Results | Conclusion

Bétérou Catchment

We use the SWAT-T by Alemayehu et al., 2017: → Improved modelling of LAI in the tropics

Variables used for model evaluation:

Variable	Time	Source	Catchment
Q	Daily	Monitoring network	Outlet
LAI	8-daily	LAI-GLASS (Liang et al., 2014)	Global cover
AET	8-daily	FLUXCOM (Jung et al., 2019)	Global cover

Motivation | Methodology | Results | Conclusion

We use **3 calibration approaches** with different levels of complexity to evaluate the role of LAI and AET:

Label	Target	Objective function
Q	Q	KGE _{eff} = KGE _Q
QL	Q, LAI	KGE _{eff} = ½ KGE _Q + ½ KGE _{LAI}
QLA	Q, LAI, AET	$KGE_{eff} = 1/3 KGE_{Q} + 1/3 KGE_{LAI} + 1/3 KGE_{AET}$

2 forcing data sets:

- W5E5 → baseline of ISIMIP future data
- Observed data → cross validation and ROPE potential

Global SA with the Morris method (LAI)

27 parameters of SWAT-T

5 Robust Estimation of Hydrological Model Parameters

Optimization with 3 strategies, ROPE algorithm

Bardossy & Singh, 2008

Motivation | Methodology | Results | Conclusion

ROPE = robust parameter estimation

Key features of ROPE algorithm:

- Iterative optimization based on objective function, here: KGE
- Robustness: it uses a depth function to select good parameters for the next loop

Advantage: multiple sets of parameters that are near-optimal (equifinality)

Limit: multiple sets of parameters that are near-optimal → no the global optimum

Outcome: 20 sets of equally good parameters

Global SA with the Morris method (LAI)

27 parameters of SWAT-T

5 Robust Estimation of Hydrological Model Parameters

Optimization with 3 strategies, ROPE algorithm

Bardossy & Singh, 2008

Motivation | Methodology | Results | Conclusion

Future climate forcing data from ISIMIP3:

- 5 GCMs
- 3 SSP scenarios
- Evaluation: near and far future

2100

2080

32

202

Optimization with 3 approaches

Approaches:	Forcing data:	ROPE:
Q only	W5E5	20 sets
Q + LAI	Observed	
Q + LAI + AET		

Discharge: W5E5 as good as seasonality

Motivation | Methodology | Results | Conclusion

Motivation | Methodology | **Results** | Conclusion

Approaches:

Forcing data:

W5E5

ROPE:

20 sets

Climate impact assessment

Approaches:	Forcing data:	ROPE:
Q only	W5E5	20 sets
Q + LAI	Observed)	
Q + LAI + AET	ISIMIP3	

What are the impacts of calibration approaches on the AET prediction?

Annual AET from 20 sets, far future (2070-2100)

N = 20 in each boxchart

- "Q only" underestimates annual AET
- "Q+LAI" predicts annual AET like "Q+LAI +AET"
- AET change prediction: Q only = 4.03 % Q+L+A = 11.7 %

- High variability for GCM application e.g., *MPI predicts increase in P, minor increase in T
- Discharge less sensitive to calibration approach
- Multi-model mean: decrease in discharge, increase in AET

Catchments are complex systems of fluxes dependent on land cover, soil, and topography.

In West Africa, AET is a key process, but still often neglected in climate impact assessment.

ISIMIP/W5E5 applicable for West Africa, but limitations for current state

Calibration approach matters: Predictions with AET vs. no AET: Differences of 7 % (far) to 9 % (near)

Less sensitive for discharge prediction

Catchments are complex systems of fluxes dependent on land cover, soil, and topography.

In West Africa, AET is a key process, but still often neglected in climate impact assessment.

ISIMIP/W5E5 applicable for West Africa, but limitations for current state

Calibration approach matters: Predictions with AET vs. no AET: Differences of 7 % (far) to 9 % (near)

Less sensitive for discharge prediction

Thank you for your attention!

Funding and support:

Federal Ministry of Education and Research

Contact: fabian.merk@tum.de