Field Boundary Extraction

Using ArcGIS Pro with Image Analyst In SWAT Modelling June 26-30, 2023 Aarhus, Denmark

USDA

SWAT +

Field Boundaries determine HRUs in SWAT Modelling

Importance of field boundaries in SWAT Modelling

- Used in identifying land use/land cover classification in a watershed (e.g., cropland, pastures, grassland)
- Specific soil, irrigation, tiles, slope, area, and other DEM properties are determined on a field-level scale
- All fields having similar properties are then grouped into HRUs and used as input for SWAT modelling

The Problems

Lack of Field Boundary Data

Field boundary data are usually private or proprietary

Sparse data

Those available do not cover entire area of interest (pastures, grassland)

Boundary edge problems

Difficult to determine edge boundaries, e.g., between pastures and grassland (herbaceous)

Digitizing Problems

Manual digitization can be labor-intensive and errorprone

The Solution

- Deep Learning
- Train Deep Learning models using orthographic satellite imageries

Use ArcGIS Pro

With Image Analyst Extension

System Requirements

Minimum Hardware

- CPU: Hyperthreaded dual-core (actual: 56 and 64-cores)
- RAM: 8 GB (actual: 1TB and 256 GB)
- **Operating System**: Windows (64-bit) 10 or 11 or Windows Server (64-bit) 2016, 2019, 2022
- Free Disk Space: 32 GB (actual: 12/15 TB)
- GPU: CUDA (Compute Unified Device Architecture)-capable GPU: RTX A4000, A6000

Note: ArcGIS Pro does not support *AMD* GPUs since these do not have CUDA—a proprietary technology of *NVIDIA*.

Software

- NVIDIA CUDA Toolkit: https://developer.nvidia.com/cuda-downloads
- .NET Desktop Runtime: version 6.0.5 or higher: https://dotnet.microsoft.com/en-us/download
- Visual Studio 2019 (licensed version)
- ArcGIS Deep Learning Framework (same version as your installed ArcGIS Pro): https://github.com/Esri/deep-learningframeworks

1 Pre-process Satellite Imagery

- Download from NAIP
 <u>https://datagateway.nrcs.usda.gov/</u>
- Download by County (filename contains County FIP code)
- Convert MrSid format to PNG or TIFF format using *XY Coordinate System:*

USA_Contiguous_Albers_Equal_ Area_Conic_USGS_version

• Clip the NAIP imagery using *Clip Raster* tool and store converted raster in a file geodatabase

2 Training Samples Manager (Image Analyst)

- Cover entire county as much as you can
- Create a **binary** schema of classes for **HED** model type:
 - Field (classvalue=1)
 - NonField (classvalue=0)
- Digitize Field class samples or
- Import from other shapefile/polygons; must include "classvalue" and "count" columns

3 Train Data and Model

- Use *Export training data for deep learning* tool (output folders containing image chips)
- Use Holistically-Nested Edge Detection (HED) model with ResNet-18 as backbone model in *Train Deep Learning Model* tool
- Output trained model is applied to satellite imageries in the boundary extraction stage using *Classify Pixels for Deep Learning* tool

Pre-Processing using ModelBuilder

Export Training Data for Deep Learning

Parameters

eoprocessin	V 4)	
9	Θ	
arameters Er	nvironments	C
Input Raster		
Dallam111_aea	3	× 📁
Additional Inpu	it Raster	
		*
Output Folder		
E:\DLModels\T	<pre>[rainedData\ClassifiedTiles\Field\Dallam_3k_HED_data</pre>	
Input Feature C	lass Or Classified Raster Or Table	
DallamTraining	gSamples	× 🗧
Class Value Field	d	
Classvalue		~ 10
Buffer Radius		
Input Mask Poly	ygons	× F
Image Format		
PNG format		
Tile Size X		25
Tile Size Y		25
Stride X		25
Stride Y		25
Rotation Angle		
Reference Syste	m	
Map space		
Output No	Feature Tiles	
	at	
Metadata Form		
Metadata Form Classified Tiles		

Environment

Geoproces	sing		~ 4 ×		
E	Export Trair	Export Training Data For Deep Learning			
Parameters	Environments		(?		
Y Processin	g Extent				
Extent		Default	*		
✓ Parallel Pr	ocessing				
Parallel Pro	cessing Factor				
90%					
✓ Raster An	alysis				
Cell Size					
Dallam111	aea		~ 🚘		

Messages

Sexport Training Data For Deep Learning (Image Analyst Tools)	×
Started: Thursday, May 4, 2023 at 9:31:41 AM	
Completed: Thursday, May 4, 2023 at 9:25:51 PM	
Elapsed Time: 11 Hours 54 Minutes 10 Seconds	
Parameters Environments Messages (2)	۲ ۱
Start Time: Thursday, May 4, 2023 9:31:41 AM	
Distributing operation across 58 parallel instances.	
NumTilesWritten = 160784, NextTileIndex = 192481	
Succeeded at Thursday, May 4, 2023 9:25:51 PM (Elapsed Time: 11 hours 54 minutes 10 sec	onds)

Train Deep Learning Model: Holistically-Nested Edge Detector (HED)

Environment

Geoprocessing		~ Ŧ ×		
Ð	(
Parameters Environn	nents	0		
Input Training Data	-			
X Dallam_3k_HED_	X Dallam_3k_HED_data			
Output Model				
Dallam_3kpng_300ep	ochsHEDModel			
Max Epochs		300		
Model Parameters				
HED Edge Detector (P	ivel classification)	~		
TIED Edge Delector (P				
Batch Size		64		
Model Arguments	Value			
chip size	256			
monitor	valid loss			
Y Advanced				
Learning Rate	0			
Backbone Model				
ResNet-18		~		
Pre-trained Model				
Validation %		20		
Ston when model	terr improving			
Stop when model	stops improving			

Geoprocessing		~ 7 ×			
Ð	Train Deep Learning Model	\oplus			
Parameters Envir	arameters Environments				
Processor Type					
-					

- Settings for # of epochs: 300
- Power outage cut it down to 85 epochs
- Model Accuracy: 75.84%
- Hardware:
 - 56-core CPU
 - 1 NVIDIA RTX A6000 GPU (48GB RAM)
 - 1 TB RAM

Post-Processing using ModelBuilder

Convert Raster to Polygon:

- Add needed attributes (area, state/county names, etc.)
- Delete polygons based on thresholds (small areas)

United States Department of Agriculture **Agricultural Research Service**

11

Hansford County, Texas

Attribute Table

Final Field Boundary Table

FID	Shape	FUID	Shape_Leng	Shape_Area	AreaAcres	HUC12	HUC8	HucName	State	County	FIPS
0	Polygon	4048401001	2067.46	44648.49	11.0328	120702011001	12070201	Stampede Creek	Texas	Bell	48027
1	Polygon	4048508002	3773.18	49878.93	12.3253	120702011001	12070201	Stampede Creek	Texas	Bell	48027
2	Polygon	4048624004	10179.449	99827.464	24.6678	120702011001	12070201	Stampede Creek	Texas	Bell	48027
3	Polygon	4048650001	20664.562	258159.70	63.792	120702011001	12070201	Stampede Creek	Texas	Bell	48027
4	Polygon	4048764001	171940.17	2048457.220	506.182	120702011001	12070201	Stampede Creek	Texas	Bell	48027

Best Practices

How much training data?

The more, the better; create samples for entire area of interest if possible (e.g., county)

Size of chips

Size >= 400px (the larger the chips, the more context it provides when training the model)

Number of chips

of chips = between 400 and 40,000 depending on the size of area of interest

13

https://www.sophiesworld.net/wp-content/uploads/2010/06/IMG_9021.jpg

Summary

Field Boundary Extraction Using Deep learning In SWAT Modelling

- Deep Learning using orthographic satellite imagery and HED model type can extract field boundaries for cropland, pasture, grassland.
- A single model was tested in different counties in the United States with good results (75.84% accuracy)
- Results can be used as input to SWAT modeling for HRU classification

Thank You USDA

- Marilyn Gambone 🔺
 - Temple, Texas
- marilyn.gambone@usda.gov 🖂
- Grassland Soil and Water Research Laboratory : USDA ARS