

APPLICATION OF SWAT FOR WATER QUALITY MODELLING IN A CHANGING CATCHMENT AND CLIMATE CONTEXT OF RIVER SOSIANI IN WESTERN KENYA

Dr. Julius K. Kollongei (PhD UKZN-RSA, MSc KU LEUVEN & VUB) and Prof. Britta Schmalz (TU DARMSTADT)

Chair of Engineering Hydrology and Water Management

Technical University of Darmstadt, GERMANY

PRESENTATION OUTLINE

- INTRODUCTION
- **2** PRELIMINARY DATA
- **3** SWAT WQ MODELLING (CATCHMENT)
- **4** CONCLUSIONS AND RECOMMENDATIONS

1. INTRODUCTION

OBJECTIVE

- To assess and monitor pollution loading in the River Sosiani Catchment (369km²), Eldoret City, Kenya.
- River Sosiani drains into Lake Victoria, the largest freshwater body in East Africa.
- Rivers in Kenya are experiencing high pollution levels from;
 - 1. Municipal and industrial point sources,
 - 2. Non-point sources resulting from agriculture, erosion and other commercial activities.
- GIS linked ArcSWAT is applied to;
 - 1. Simulate catchment hydrology and water quality,
 - 2. Identify the causes of changes in water quality and find criteria to prevent imminent water quality deteriorating trends.

Alexander von HUMBOLDT STIFTUNG

TECHNISCHE UNIVERSITÄT DARMSTADT

ihwb

1. INTRODUCTION

CHANGING CATCHMENT AND CLIMATE CONTEXT

• Land Use/ Land Cover Area (369km²) (2023)

YEAR	LULC	AREA COVERED	SOURCE
1989	FOREST	37% (Natural & planted forests)	(Kibii et al., 2021)
	AGRICULTURE	32.2%	
		-Maize (7.25%) -Wheat (5.5 %) -Mixed Farming (19.42%)	
2023	FOREST	25%	SWAT modelling
	AGRICULTURE	54.1%	
		-Maize (19.4%) -Wheat (7%) -Mixed Farming (27.66%) (potatoes-8.78%, tea-7.3%, pasture-6.5%, cabbages-5.08%)	

Alexander von HUMBOLDT STIFTUNG

ihwb

1. INTRODUCTION

CHANGING CATCHMENT AND CLIMATE CONTEXT

Land Use/Land Cover and Soil Maps - 369km² (2023)
 AGRC:54%, FRST:25%, URBN:18%
 KE100:47%, KE69:40%, KE95:8%, KE7002:5%

ihwb

1. INTRODUCTION

CHANGING CATCHMENT AND CLIMATE CONTEXT

Runoff/Groundwater Recharge(high variations); impacts river flows, reservoir storage, WQ

YEAR	RUNOFF		1CB05 SOSIANI DISCHARGE (m ³ /s)				
2000	228.35	158.2					
2009	205.81	149.61	() ² () ² ()				
2018	243.08	119.51					
2023	168.36	115.95	يقن 000				
Streamflow	-surface runoff -lateral flow (vadose zone)	-percolation to shallow aquifer (return flow) -Recharge to deep aquifer	1200 100 1				

J.K.Kollongei | Chair of Engineering Hydrology and Water Management TUDa | SWAT Conference | 10.07.2024

HUMBOLDT

ihwb

1. INTRODUCTION

CHANGING CATCHMENT AND CLIMATE CONTEXT

- Slope Map, Stream Network and Sampling Points
- 0-7%:Flat, 7-14%:mild, 21-28%:Steep ٠

Sampling Points: SP1 (U/S) to SP6 (D/S):(47.9km)

2. PRELIMINARY DATA

WET AND DRY SEASONS: Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) Wet Season: Apr- Jul '23 (4 months), Dry Season: Feb- Mar'23 (2 months)

-High DO, 7mg/I-good, lowest(SP6-Outlet)

Alexander von

STIFTUNG

HUMBOLDT

-High BOD, highest (SP6-Outlet)

ihwb

TECHNISCHE

2. PRELIMINARY DATA

WET AND DRY SEASONS: Nitrate (NO3-N) and Phosphorous (P)

• P – limiting nutrient for eutrophication – freshwater (stagnant > 0.10 mg/l, Flowing waters > 0.25 mg/l)

-low NO3, highest: SP6-Outlet (1CB05)

Alexander von

STIFTUNG

HUMBOLDT

-High P, highest: SP6-Outlet (1CB05)

ihwh

LULC map

Reclassify

3. SWAT WQ MODELLING

Overlay

Alexander von

STIFTUNG

HUMBOLDT

METHODOLOGY AND DATA

DEM

Fill sink

Basin delineation

_____ M

•

٠

Soil map

Reclassify

- Streamflow measurements
 - WQ tests
 - Modelling Catchment
 - ✓ Streamflow
 - ✓ Water quality
 - ✓ Crop yields

MAIN TASKS

Output

TECHNISCHE UNIVERSITÄT DARMSTADT

ihwb

ihwb

METHODOLOGY AND DATA

DATA	Parameter Explanation	Equipment/Downloads
DEM	SRTM -1 ARC-S approx. 30 m resolution; Elevation (2764 - 2004 m asl; 7 - 28 degrees)	Downloads from USGS website
LULC	Farmlands (crops), Forest, Urban (built area), others (grasslands, water bodies) etc.	Arc GIS
SOILS	KE100 -Nitisols-Humic, KE69 -Ferralsols-Haplic, KE7002 -Nitisols-Dystric & KE95 –Gleysols-Eutric.	Kensorter soil map downloads from UN-FAO website
R. NETWORK	Stream order(1,2)-Ellegerini, Endoroto, Sosiani; Sampling points (SP1 to SP6)	Arc GIS
WQ	DO, BOD, pH, EC, TEMP, NO3-N, P, TDS, TSS	HACH DR/2000 Direct Reading Spectrophotometer (In-situ), Water Quality (WQ) Labs
Others	Discharge, Cross-sectional areas, velocities, wetlands, buffer zones, reservoirs, meteorological data	River Discharge Gauge Stations, Automatic Weather Stations
MODELS	Arc SWAT & QUAL2K	Arc GIS, website downloads

ihwb

CALIBRATION (1995-1999) Parameters:CN2, ESCO, ALPHA_BF.gw, GW_REVAP.gw, REVAPMN.gw, GWQMN.gw, SLSUBBSN.hru, and SOL_AWC.sol

ihwb

VALIDATION (2014-2017) Parameters: Calibration $R^2 = 0.70$, Validation $R^2 = 0.68$

STIFTUNG **3. SWAT WQ MODELLING**

TECHNISCHE UNIVERSITÄT DARMSTADT

ihwb

SIMULATION (2018-2023)

Alexander von

HUMBOLDT

Crop Yields (Maize 38bags@90kg/acre-8.4t/h, Wheat 25bags@90kg/acre-5.5t/h)

¹CB05 SOSIANI NO3 N OUT (mg/l) 0 Nitrate, NO3_N (mg/l) 250 Rainfall (mm) 500 750 0.0 0 1200 Aug-23 Sep-23 Mar-23 Apr-23 Nov-23 Jun-23 Jul-23 m Vay-23 Oct-23 Dec-23 Feb-2 May-18 Sep-18 May-19 Sep-19 Jan-20 May-20 Sep-20 Sep-21 May-22 May-23 Jan-19 May-21 Sep-22 Jan-23 Sep-23 Jan-21 Jan-22 Jan-18 ■ Observed NO3 N (mg/l) ■ Simulated NO3 N (mg/l) ■ RAINFALL (mm) -FLOW OUTcms RAINFALL (mm)

ihwb

SIMULATION (2018-2023)

Parameters: Phosphorous (P)

Crop Yields (Maize 38 bags@90kg/acre-8.4t/h, Wheat 25 bags@90kg/acre-5.5t/h)

4.CONCLUSIONS/RECOMMENDATIONS ihwb

CONCLUSIONS

- The River Sosiani's WQ deteriorates downstream due to industrial and municipal effluent discharge (reduced DO, increased BOD, increased NO3-N and P pollutants downstream).
- Wet season variations are attributed to increased surface runoff, leaching and lateral flow.
- Dry seasons show higher concentrations of WQ parameters, some of which are WHO permissible.
- SWAT modelling results can be used for future sustainable water management Urban-Rural Catchments (changing catchment and climate context).

RECOMMENDATIONS

- Re-afforestation to reduce runoff and increase groundwater recharge.
- Optimal fertilizer use to sustain crop yields and protect environment.
- Integration of models for data scarce basins where WQ modelling is a challenge (e.g SWAT and QUAL2K)

THANKS FOR YOUR ATTENTION!

Contact: j.kollongei@ihwb.tu-darmstadt.de

REFERENCES

- ihwb
- Kibii, J. K., Kipkorir, E. C. and Kosgei, J. R. 2021. Application of Soil and Water Assessment Tool (SWAT) to Evaluate the Impact of Land Use and Climate Variability on the Kaptagat Catchment River Discharge. Sustainability Vol. 13, 1802.
- Kiplagat, D. K., Kollongei, J. K. and Kiptum, C. K. 2018. Modelling the Impacts of Land Use Change on Stream Flow in Kimwarer Catchment Using SWAT. American Journal of Water Science and Engineering Vol. 4(No. 4): 107-116.
- Kollongei, K. J. and Lorentz, S. A. 2015. Modelling hydrological processes, crop yields and NPS pollution in a small sub-tropical catchment in South Africa using ACRU-NPS. Hydrological Sciences Journal 60(11): 2003-2028.
- Van Griensven, A., Ndomba, P., Yalew, S. and Kilonzo, F. 2012. Critical review of SWAT applications in the upper Nile basin countries. Hydrological Earth System Sciences Vol. 16: 3371-3381

MANAGEMENT SCHEDULE

CROP/DATE	TILLAGE	FERTILIZER	CROP/DATE	TILLAGE	FERTILIZER	CROP/DATE	TILLAGE	FERTILIZER
MAIZE (190 days)			PASTURE (180 days)			WHEAT (120 days)		
FEB 1	Mouldboard		FEB 1	Mouldboard		FEB 1	Mouldboard	
MAR 21	Harrow/ Planting	DAP (18:46:0) (185.25kg/ha)	MAR 21	Harrow/ Planting	DAP (18:46:0) (168.4kg/ha)	JUN 21	Harrow/ Planting	DAP (18:46:0) (200kg/ha)
MAY 21		UREA (185.25kg/ha)	MAY 21		UREA (168.4kg/ha)	JUL 21		UREA (200kg/ha)
JUN 21		UREA (185.25kg/ha)	JUN 21		UREA (168.4kg/ha)	AUG 21		UREA (200kg/ha)
OCT 1	Harvest & Kill		SEP 21	Harvest only		OCT 21	Harvest & Kill	

ihwb

MANAGEMENT SCHEDULE

CROP/DATE	TILLAGE	FERTILIZER	CROP/DATE	TILLAGE	FERTILIZER	CROP/DATE	TILLAGE	FERTILIZER
TEA (Perennial)			CABBAGES (90 days)			POTATOES (120 days)		
FEB 1	Mouldboard		FEB 1	Mouldboard		FEB 1	Mouldboard	
MAR 21	Planting	None	MAY 21	Harrow/ Planting	DAP (18:46:0) (197.6kg/ha)	MAR 21	Harrow/ Planting	DAP (18:46:0) (500kg/ha)
MAY 1		DAP (18:46:0) (80kg/ha)	JUN 14		UREA (247kg/ha)	APR 21		UREA (300kg/ha)
AUG 1		NPK(25:5:0) (160kg/ha)	JUL 14		UREA (494kg/ha)	MAY 21		UREA (300kg/ha)
OCT 1		UREA (120kg/ha)						
DEC 1		NPK(25:5:0) (240kg/ha)						
DEC 31	Harvest only		AUG 21	Harvest & Kill		JUL 21	Harvest & Kill	

ihwb

MANUAL CALIBRATION

PARAMETER	ORIGINAL	FINAL	PARAMETER	ORIGINAL	FINAL	
CN			REVAPMN.gw	1000	525	
AGRC	84	45	SLSUBBSN.hru	7.8	14 (Max),1.4 (min)	
• RNGE	84	40	SOL_AWC .sol	LOWER PLATEAU	SOL_AWC .sol	UPPER PLATEAU
• FRST	79	37	 FERRALSOLS 1 (KE69) 	0.140	 NITISOLS 1 (KE100) 	0.160
• URBN	79	67	 FERRALSOLS 2 (KE69) 	0.125	■ NITISOLS 2 (KE100)	0.150
ESCO	0.95	0.01	 FERRALSOLS 3 (KE69) 	0.120	 NITISOLS 3 (KE7002) 	0.150
GWQMN.gw	1000	500	 GLEYSOLS 1 (KE95) 	0.110	 GLEYSOLS 1 (KE95) 	0.100
ALPHA_BF.gw	0.048	0.56	 GLEYSOLS 2 (KE95) 	0.120		
GW_REVAP.gw	0.05	0.02	RCN (mg/l)	0.02	CHTMX (Tea), m	0.7