SWAT as a decision support tool to regulate impacts of forestry on water quantity in Uruguay

Eliana Nervi Faggiani, Jimena Alonso, Walter Baethgen, Willem Vervoort

2025 Jeju, South Korea SWAT Conference Topic: Forest Hydrology

Land use change impacts soil, biodiversity, water and climate

New South Wales state in Australia (~800,000 km²) has **changed yearly since**

1960.

From 1960 to 2019, almost a third of the global land surface (43 million km²) has changed due to human activities (HILDA+ dataset, Winkler et al. 2021)

Global land use/cover change areas from Winkler et. al 2021 in 1960–2019.

The effect of forestry coverage in streamflow at catchment level: <u>it is not that simple</u>

Small catchments (<1000 km²)

- Small -> Pair Catchment Experiments (PCE) area the leading approach to collecting highquality data for land use change.
- *Scaling up* from small-scale experiments is problematic (soil, slope, climate, land use).
- How can we advise decisions in land use change for afforestation allocation in large catchments?

Overview of global data analysis from Zhang et al., 2017 (J

A decision support tool to regulate impacts of forestry on water quantity

- The National Forest map 2024 shows that forest use in Uruguay reaches 6.6% of the territory, with a 6.9% increase compared to 2021 (MA,2024).
- Tacuarembó River Catchment (TRC) in Uruguay, South America has the highest percentage of plantation area of the country.

Forestry =

Introduction | Objective | Methodology | Results | Discussion | Conclusions | A decision support tool to regulate impacts of forestry on water quantity

- Similar to many other countries, current regulations apply a single allowed maximum fractional area of forestry, ignoring key landscape and climate variation.
- Management decisions allow 60% area for each sub catchment level 5 (Decree No. 405/02, December, 2021)
- Can we use SWAT to advise catchment management regulations in the Tacuarembó River Catchment?

Objective

- To demonstrate how SWAT can provide more support to decision makers, identifying impacts on the whole flow duration curve and reflecting key landscape and climate.
- In particular, the tool should identify the spatial and temporal variation in the impact of forestry development

Experimental design

Experimental design: potential plantation areas

Transition code	Landuse		
PINE	Pines		
EUCA	Eucalyptus		
GRAS	Natural grasslands		
OTRO	Other areas not suitable for forest plantation		
FORN	Native forest		
ESC AGRI	Scenario Agriculture	Baseiline	Scenari
FORC	Forest conversion (change in forest plantations)		Saka-
FORD	Forest plantation up to 2018		
FORQ	Forest plantation up to 2015	Pt	MALINA
FONP	Native forest to forest plantation	Ferente en	vitu anaaa
FODV	Forest plantation	(Decree No	. 405/02)

from 2018

10 km

Dynamic land use change in mgt tables for QSWAT 2012

Experimental design: > afforestation scenarios

Baseline (26%)

Scenarios A1-A10 25%, 50%, 100% Scenario land use HRUs

→from pasture to pine→ from pasture to eucalyptus

Calibration and validation

Catchment	NSE	KGE	R ²	PBIAS	Vol_frac
				(%)	
FLOW_OUT_41	0.88	0.92	0.88	0.95	0.95
Subs1:41	0.57	0.52	0.69	1.07	1.00
FLOW_OUT_41	0.86	0.87	0.87	-11.78	0.89
Subs1:41	0.51	0.36	0.77	8.88	0.47
	Catchment FLOW_OUT_41 Subs1:41 FLOW_OUT_41 Subs1:41	Catchment NSE FLOW_OUT_41 0.88 Subs1:41 0.57 FLOW_OUT_41 0.86 Subs1:41 0.51	Catchment NSE KGE FLOW_OUT_41 0.88 0.92 Subs1:41 0.57 0.52 FLOW_OUT_41 0.86 0.87 Subs1:41 0.51 0.36	Catchment NSE KGE R ² FLOW_OUT_41 0.88 0.92 0.88 Subs1:41 0.57 0.52 0.69 FLOW_OUT_41 0.86 0.87 0.87 Subs1:41 0.51 0.36 0.77	Catchment NSE KGE R ² PBIAS (%) FLOW_OUT_41 0.88 0.92 0.88 0.95 Subs1:41 0.57 0.52 0.69 1.07 FLOW_OUT_41 0.86 0.87 0.87 -11.78 Subs1:41 0.51 0.36 0.77 8.88

- Streamflow gave only slightly reduced performance in the prediction of streamflow at the outlet
- The model performance for ET was not as good as for streamflow

Forest expansion scenario simulations in the TRC

100 simulations

 Model simulations across the parameter distribution indicate high variability

Forest expansion scenario

simulation in the TRC

Catchment location

- Upper catchments are more sensitive to water yield changes due to afforestation
- Effect of catchment features (Cornish and Vartessy, 2001)

Forest expansion scenario

simulation in the TRC

- Rainfall variability consistently masks many other changes in the catchment.
- In drier conditions, runoff is more sensitive to the increase in forest area (Zhang et al. 2001)
- Climate in Uruguay is strongly influenced by ENSO events (De Vera and Terra (2018), Baethgen (2010).

How could forest change flow quantiles?

← → C ③ 127.0.0.1:3907

Catchment Selection

Select Catchment:

9

TRC Forestry Scenarios - Flow Duration Curve Analysis

-

Generate FDC Scenario Description Scenario - base : 0 % change in forested area from the base scenario (71.97 % forestry area) Scenario - 100 E : 30.9 % change in forested area with Eucalyptus from the base scenario (94.21 % forestry area) Scenario - 100 P : 30.9 % change in forested area with Pine from the base scenario (94.21 % forestry area) Scenario - 50_E1 : 21.24 % change in forested area with Eucalyptus from the base scenario (87.26 % forestry area) Scenario - 50_E2 : 10.67 % change in forested area with Eucalyptus from the base scenario (79.65% forestry area) Scenario - 50 P1 : 15.91 % change in forested area with Pine from the base scenario (83.42 % forestry area) Scenario - 50 P2 : 10.67 % change in forested area with Pine from the base scenario (79.65 % forestry area) Scenario - 25_P1 : 15.91 % change in forested area with Pine from the base scenario (83.42 % forestry area) Scenario - 25_P2 : 10.67 % change in forested area with Pine from the base scenario (79.65 % forestry area) Scenario - 25 E1 : 0 % change in forested area with Eucalyptus from the base scenario (71.97 % forestry area) Scenario - 25 E2 : 10.67 % change in forested area with Eucalyptus from the base scenario (79.65 % forestry area)

Scenario Definitions

Scenario: Conversion of ESC to forestry land use.

- 100_E: 100% Eucalyptus
- 100_P: 100% Pine
 Intermediate (e.g. 50_F1)

 Intermediate (e.g., 50_E1, 50_P2): Random HRU assignments

Key points to take home

- The impact of forestry on streamflow varies significantly (location, features). Still, the main variable affecting water availability and the level of year-to-year afforestation impact is rainfall.
- If the simulations aim to develop relevant **landscape level scenarios**, then this has to come with the recognition that landuse activities are not static and interact with climate.
- Policies should include room for adjustment to consider **uncertainties** if new evidence emerges.
- Using a single threshold for evaluating forestry impact may lead to an underestimation of the true environmental impact in some areas and a loss of opportunity for sustainable forestry development.

G (i) 127.0.0.1:3907

TRC Forestry Scenarios – Flow Duration Curve Analysis

Catchment Selection Select Catchment:

Generate FDC

9

Scenario Description

Scenario - base : 0 % change in forested area from the base scenario (71.97 % forestry area) Scenario - 100_E : 30.9 % change in forested area with Eucalyptus from the base scenario (94.21 % forestry area) Scenario - 100 P : 30.9 % change in forested area with Pine from the base scenario (94.21 % forestry area) Scenario - 50_E1 : 21.24 % change in forested area with Eucalyptus from the base scenario (87.26 % forestry area) Scenario - 50_E2 : 10.67 % change in forested area with Eucalyptus from the base scenario (79.65 % forestry area) Scenario - 50 P1 : 15.91 % change in forested area with Pine from the base scenario (83.42 % forestry area) Scenario - 50 P2 : 10.67 % change in forested area with Pine from the base scenario (79.65 % forestry area) Scenario - 25_P1 : 15.91 % change in forested area with Pine from the base scenario (83.42 % forestry area) Scenario - 25 P2 : 10.67 % change in forested area with Pine from the base scenario (79.65 % forestry area) Scenario - 25 E1 : 0 % change in forested area with Eucalyptus from the base scenario (71.97 % forestry area) Scenario - 25_E2 : 10.67 % change in forested area with Eucalyptus from the base scenario (79.65 % forestry area)

Scenario Definitions

Scenario: Conversion of ESC to forestry land use.

- 100_E: 100% Eucalyptus
- 100 P: 100% Pine
- Intermediate (e.g., 50_E1, 50_P2): Random HRU assignments

Scenario

(base, 1)

Flow Duration Curves Quantile Table

Flow Duration Curve Subcatchment 9

Q 🕁

Lownload FDC Data

25

50

Exceedance Probability (%)

75

100

log 10(Flow [cms])

-1

0

Land Use and Subcatchment Map

Forest expansion scenario simulation in the TRC

• Conversion of the total potential area in the TRC to forest resulted in a mean change in monthly flow of 28%

Limitations and policy implications from SWAT scenarios

- Future changes in climate, landuse or forest operations can change these results.
- Policies should include room for adjustment to consider uncertainties if new evidence emerges.
- Despite the efforts to capture the vegetation-water interactions in the model more work is needed to refine plant parameters (ET underprediction in small sub-catchments with mixed land uses).

HRUs simulated biomass

- Different planting and clearing dates for the 25 year rotations on forestry-priority soils
- Representation of the change of forestry area 2004-2024 in the baseline

How could forest expansion affect flow quantiles?

Table 7 Parameters used in model calibration

Method	Min	Max	Parameter	References	Calibrated
v	0.1	0.50	CANMX.hru_GRAS,ESC	N. O. von Stackelberg et al. (2007)	0.53
v	2.00	12.00	CANMX.hru_PINE	Haas et al. (2021); N. O. von Stackelberg et al. (2007)	5.04
v	10.00	22.00	CANMX.hru_EUCA	(Alonso, 2021)	15.95
v	2.00	22.00	CANMX.hru_FORC,FONP, FORD,FORQ,FODV	(Alonso, 2021)	8.11
v	3.92	4.22	BLAI{94}.plant.dat_	LC	4.11
v	1.84	1.92	BLAI{12}.plant.dat_	LC	1.87
v	0.99	1.00	DLAI{94}.plant.dat_	LC	0.99
v	1.00	1.00	DLAI{12}.plant.dat_	LC	0.99
а	-2.28	-1.89	T_BASE{94}.plant.dat_	LC	-2.00
a	15.65	16.71	T_OPT{94}.plant.dat_	LC	16.40
а	0.65	0.98	T_BASE{12}.plant.dat_	LC	0.85
a	8.13	9.75	T_OPT{12}.plant.dat_	LC	8.92
v	0.89	0.91	ALAI_MIN{94}.plant.dat_	LC	0.90
v	2.28	2.44	ALAI_MIN{12}.plant.dat_	LC	2.43
v	0.64	0.70	LAIMX1{94}.plant.dat_	LC	0.66
v	0.62	0.67	LAIMX2{94}.plant.dat_	LC	0.64
v	0.50	0.61	FRGRW1{94}.plant.dat_	LC	0.62
v	0.07	0.13	FRGRW2{94}.plant.dat_	LC	0.09
v	0.24	0.25	LAIMX1{12}.plant.dat_	LC	0.24
v	0.90	0.90	LAIMX2{12}.plant.dat_	LC	0.89
v	0.08	0.09	FRGRW1{12}.plant.dat.	LC	0.85
v	0.41	0.44	FRGRW2{12}.plant.dat.	LC	0.42
v	877.00	1271.00	REVAPMN.gw_PINE	LC	1854.00
v	302.00	556.00	REVAPMN.gw_GRAS,ESC	LC	414.00
v	877.00	1271.00	REVAPMN.gw_EUCA	LC	1518.00

v	877.00	1271.00	REVAPMN.gw_FORC,FONP, FORD,FORQ,FODV	LC	975.00
v	0.06	0.12	GW_REVAP.gw_PINE	LC	0.17
v	0.02	0.02	GW_REVAP.gw_GRAS,ESC	LC	0.01
v	0.06	0.12	GW_REVAP.gw_EUCA	LC	0.19
v	0.06	0.12	GW_REVAP.gw_FORC,FONP, FORD,FORQ,FODV	LC	0.14
v	0.012	0.019	GSI{94}.plant.dat_	LC	0.19
v	0.006	0.01	GSI{12}.plant.dat_	LC	0.009
v	0.004	0.009	GSI{119,184,183,185}.plant.dat_	(Alonso, 2021)	0.009
v	6.00	10.50	MAT_YRS{94}.plant.dat_	LC	4.00
v	7.00	9.00	MAT_YRS{119,184,183,185}.plant.d	lat. (Alonso, 2021)	6.00
v	1.064	1.788	VPDFR{94}.plant.dat_	LC	1.47
v	1.57	2.539	VPDFR{12}.plant.dat_	(Alonso, 2021)	2.05
v	1.064	1.788	VPDFR{119,184,183,185}.plant.dat_	(Alonso, 2021)	1.56
v	0.133	0.428	ESCO.hru_EUCA	LC	0.22
v	0.133	0.428	ESCO.hru_FORC,FONP, FORD,FORQ,FODV	LC	0.18
v	0.133	0.428	ESCO.hru_PINE	LC	0.36
v	0.001	0.17	ESCO.hru_GRAS,ESC	LC	0.02
v	0.645	0.9	EPCO.hru_PINE	LC	0.71
v	0.0.645	0.9	EPCO.hru_EUCA	LC	0.89
v	0.645	0.9	EPCO.hru_FORC,FONP, FORD,FORQ,FODV	LC	0.92
v	0.63	0.877	EPCO.hru_GRAS,ESC	LC	0.68
v	0.00	1.00	ALPHA_BF.gw	SWAT manual (Arnold ct al., 2012)	0.65
r	-0.30	-0.01	CN2.mgt_PINE	LC	-0.32
r	-0.08	0.10	CN2.mgt_GRAS,ESC	LC	-0.13
r	-0.50	0.50	CN2.mgt_EUCA	SWAT manual(Arnold et al., 2012)	-0.33
r	-0.50	0.50	CN2.mgt_FORC,FONP, FORD,FORQ,FODV	SWAT manual (Arnold ct al., 2012)	-0.30
r	-0.50	0.50	CN2.mgt_AGRI	SWAT manual (Arnold ct al., 2012)	-0.22
v	200.00	7000.00	GWQMN.gw_EUCA,FORC, FORP,FORD,FORQ,FODV,PINE	SWAT manual (Arnold ct al., 2012)	6632
v	0.18	0.22	OV_N.hru_GRAS,ESC	SWAT manual (Arnold et al., 2012)	0.20
v	0.00	500.00	GW_DELAY.gw_GRAS,ESC	SWAT manual (Arnold ct al., 2012)	421.00
v	0.00	500.00	GW_DELAY.gw_EUCA,PINE	SWAT manual (Arnold ct al., 2012)	467.00
v	0.00	500	GW_DELAY.gw_FORC,FONP, FORD,FORQ,FODV	SWAT manual (Arnold ct al., 2012)	360.00

_

Land use maps

Change in forested area 2004-2024

Source \diamond Observed (area calculated from available maps) • Simulation 2004-2024

Pine biomass growth and LC data

Data	Source	Details	Reference
Digital Terrain Model	Electronic Govern- ment and Information and Knowledge Soci- ety Agency (IDEUY- AGESIC)	Resolution of 0.32 m/pixel resized to 120 m/pixel	https:// visualizador.ide. uy/geonetwork/
Weather data	12 rain gauges from UTE (Uruguayan Electricity Company) and 1 clima- tological station from the National Agricultural Research Institute (INIA)	Daily rainfall from UTE (stations ID: 1195, 1220, 1224, 1279, 1301, 1308, 1338, 1339, 1374, 1444, 1484). INIA Tacuarembó cli- matological station: Daily rainfall, daily ET (Penman), solar radiation, temperature, wind velocity (2000–2019). Weather data was converted to a monthly time step.	Agroclimatic station INIA Tacuarembó (INIA, 2021) and UTE (https:// portal.ute.com.uy/)
Soil map	MGAP	The soil map was adapted from (Hastings et al., 2022) developed using the 1:40,000 soil map from MGAP-RENARE (2016), with representative profiles for the Río Ne- gro watershed	(Hastings et al., 2022)
Land-use map	MGAP	The vegetation map for the purpose of this study was generated using the Union tool in QGIS 3.4.1 QGIS Development Team (2018) applied to the landuse cover map from 2015 and the afforestation maps from 2004, 2015, 2018 and 2012.	Land cover maps from OAN-MA (Observatorio Ambiental Nacional, Min- isterio de Ambiente, 2000) and afforestation maps from MGAP (Ministerio de Ganadería, Agricultura y Pesca (MGAP), 2022)

Table 1 Input data for SWAT model implementation in the Borracho catchment.

