

BiT Bahir Dar Institute Of Technology ባሕር ዳር ቴክኖሎጂ ኢንስቲትዩት Bahir Dar University ባሕር ዳር ዩኒቨርሲቲ

COMPARING SWAT, SWAT+ AND SWAT-WIL MODELS FOR A HOLISTIC ENVIRONMENTAL FLOW ASSESSMENT OF TROPICAL HIGHLAND RIVERS

WUBNEH BELETE ABEBE Friday, June 28, 2023 Aarhus, Denmark

Outline

- Background
- Methodology
- Results and discussion
- Conclusion

SWAT

Background

- Aquatic ecosystems are degrading in the Lake Tana basin
 - Landscape degradation (Lemma et al., 2019)
 - Climate change (Tigabu et al., 2021, Setegn et al., 2011, Belete, 2014)
 - Water resources development (Singh *et al.*, 2020, Hughes and Farinosi, 2020)

• The preservation of natural hydrological regimes is relevant for maintaining ecosystem services (Reitberger and McCartney, 2011)

• Maintenance of flows in rivers help make water resources uses sustainable (McClain, 2013, Pahl-Wostl *et al.*, 2013)

Background ...

- knowledge about environmental flows is essential for conserving rivers (NSW, 2020)
 - Flora, fauna, human being
- Lack of knowledge on relationships between ecological processes and hydrological characteristics (Abebe, 2021)
- Ecological studies to infer relationships with environmental flow are being undertaken internationally (Poff et al., 2017),

 \checkmark helpful to do proper planning and management

Background ...

- In Ethiopia, water is being abstracted impacting the environment (Alemayehu *et al.*, 2010, Awulachew *et al.*, 2007)
- Environmental flow recommendations in Ethiopia:
 - ABA = 10%–25% MAF
 - Most dam projects = the 95% exceedance probability flow (Q95)
- Lack consideration of the variable and dynamic nature of rivers
 - Timing? Quality? Which ecosystem? livelihoods? = Are not sought
- Lack consideration of the impacts on societal livelihoods dependent on ecosystem services (Abebe *et al.*, 2007)

- Objective: is to compare the different SWAT models in simulating the important hydrological components for environmental flow assessment in the Gumara River basin
 - Modelling flow of Gumara River using SWAT2012, SWAT+ and SWAT-WIL
 - Comparing model performances, water balance terms closure and locating runoff generation areas
 - Evaluate capturing of environmental flow components

Description of the study area

- Area 1376 km²
- Major tributary of Lake Tana basin
- Rainfall 1,326 mm
- Welala and Shesher wetlands
- Ecologically important
 - 15 unique Labeobarbus fish
 - 12 globally threatened bird species
 - UNESCO Biosphere reserve areas

Methodology – SWAT modelling

• Data	S.N.	Data type	Spatial resolution	Source		
	1	River flow, 1981-2018, Q in m ³ s ⁻¹		MoWIE, Ethiopia		
	2	Precipitation, 1981-2018	0.25 ⁰	CHIRPS 2.0 Africa (KNMI		
				climate explorer)		
	3	Temperature Min/Max, 1981-	0.25 ⁰	ERA5 Africa (KNMI climate		
		now		explorer)		
	4	Soil	1:250,000	MoWIE, BCEOM (1998)		
	5	Land use/cover, 2019	30 m	USGS Landsat images		
	6	DEM SRTM	30 m	NASA / USGS / JPL-Caltech		

• Analysis

Modeling flow, Performances, Water balance
Mapping runoff areas

• Tools

 \circ SWAT2012, SWAT-WIL (30 and 60 DPIMP), SWAT+ (with/without LSU), SWAT-Editor

o ArcGIS, TauDEM, Google earth engine, excel

Results and discussions: Model performance

Scenarios	Objective		SWAT+LS		SWATwil60D	SWATwil30D
	function	SWAT2012	\mathbf{U}	SWAT+	PIMP	PIMP
Default	NSE	0.2	0.31	0.31	0.34	0.37
	R ²	0.35	0.11	0.1	0.13	0.2
	RSR	0.89	0.94	0.95	0.93	0.89
	PBias	58.5	68.5	69.4	67.8	61.7
Calibration	NSE	0.87	-	0.82	-	0.81
	R ²	0.93		0.86		0.83
	RSR	0.35		0.43		0.43
	PBias	13.4		4.7		14.9
validation	NSE					
	R ²	0.89		0.77		0.82
	RSR	0.57		0.59		0.82
	PBias	42.6		34.6		66.1

Water balance closures

• Higher closure term for SWAT+ LSU; where run-on was not considered

SN	Water Balance	SWAT2012	SWAT+LSU	SWAT+	SWATWIL_DEPIMP=6	SWATWIL_DEPIMP=30c	
	parameter				0cm	m	
1	Р	1333.6	1391.5	1391.3	1345.8	1345.8	
2	SurQ	820.0	550.2	485.7	299.17	368.39	
3	LatQ	13.7	9.97	10.0	24.39	29.81	
4	GwQ	6.5	7.3	7.3	129.57	134.27	
5	ET	501.5	890.1	890.2	890.5	812.2	
6	Run-on		60.069	0	1242 (2	1244 (7	
Sum (2 to 5)		1341.8	1,457.6	1,393.2	1343.03	1344.07	
Balance		-8.2	-66.1	-1.9	2.17	1.13	
Balance with run-on		-8.2	-6.031	-1.9			

Locating Runoff Areas

Capturing Environmental flow components

• **Captured better!** SWAT-WIL for low flow and SWAT+ for high flow

Environme ntal flow	Observed flow (Abebe et al., 2020)		SWAT20 12	SWAT+ LSU	SWAT+	SWATwil 30	SWATwil 60
component	Flow, m ³ s⁻	percen tile	Flow, m ³ s ⁻¹				
Extremely low flow	<0.17	<10	0	0	0	<0.73	<0.46
Low flow	0.17-4.76	10 to 28	0	0	0	0.73– 1.03	0.46- 0.74
High flow pulse	4.76- 294.4	28 to 97.5	0-179	0-174	0-174	1.03-17	0.74-158
Small flood	294.4- 483.1	97.5 to 99.93	179-476	174- 466	174- 466	177-425	158-402
Large flood	> 483.1	>99.93	>476	>466	>466	>425	>402

Conclusions

- SWAT-WIL and SWAT+ performed better than SWAT2012 in capturing the low flows and the high flows respectively and located accurately runoff generation areas
- Locating runoff area accurately helps accurately locating the fate of pollutants and planning water quality management
- The water balance terms closed well for SWAT2012, SWAT-WIL and SWAT+ without landscape unit but not SWAT+LSU unless run-on considered
- Looking at the possibilities to integrate SWAT-WIL with SWAT+ for environmental flow assessment study of different catchment characteristics

Thank you for your attention!

Acknowledgement!

- Amhara Design and Supervision Works Enterprise (**ADSWE**) takes the lead for my great appreciation in financing a PhD research **a visionary water works consultancy firm**!!!
- DAC

- Short research stay providers
 - Prof Kristine Walraevens– UGent; Prof Ann Van Griensven VUB; Dr Edo Abraham TUDelft
- Project financial and technical support CIAT Dr Lulseged Tamene and Dr Wuletawu Abera; IWMI - Meron
- Course providers Dr Mulugeta Azeze, Dr Fasikaw Atanaw, Dr Mamaru Ayalew
- Colleagues from ADSWE, BDU/BIT, BNWI, BoA
- Family and parents

Alliance

