Development of reservoir operation functions in SWAT+ using a generic data-driven reservoir operation model

Osvaldo Luis Barresi Armoa, Jeffrey G. Arnold, Donghui Li, Yanan Chen, Ximing Cai, Sabine Sauvage and José Miguel Sánchez-Pérez

Presenter: Osvaldo Luis Barresi Armoa

SWAT Conference, Strasbourg - July 2024

Represent the real-world reservoir operation behaviors	Water Supply Flood control Hydropower Generation Navigation Ecosystem protection Recreation	Reservoirs	Streamflow can be modified by reservoir construction and operation
	Better understand the impac on natural and human	SWAT+	
Decision Tables:	SOIL & WATER ASSESSMENT TOOL		

Decision tables are a great way to represent real world reservoir operations

Name	Conditions	Alternates	Actions							
res_release	5	5	5							
VAR	OBJ	OB_NUM	LIM_VAR	LIM_OP	LIM_CONST	ALT1	ALT2	ALT3	ALT4	ALT5
vol	res	0	pvol	*	0.8	<	>	-	>	-
vol	res	0	pvol	*	1.3	-	<	>	-	-
vol	res	0	evol	*	1	-	-	<	<	>
month	null	0	null	-	5	-	>	>	<	-
month	null	0	null	-	9	-	<	<	>	-
ACT_TYP	OBJ	OB_NUM	NAME	TYPE	CONST	OUTCOME				
release	res	0	below_principal	days	150.	У	n	n	n	n
release	res	0	non-flood<1.3	days	100.	n	У	n	n	n
release	res	0	non-flood>1.3	days	50.	n	n	У	n	n
release	res	0	flood	days	25.	n	n	n	у	n
release	res	0	over_emergency	days	5.	n	n	n	n	У

Depicting the decision rules can be challenging

- Lack of operational data I cannot reproduce the decision rules!
- Complexity of reservoir functions (production of energy, irrigation, flood control, ecological actions) thus time consuming.
- Hydrology of the basin is highly affected because of the presence of VARIOUS reservoirs.

Machine Learning can help

- In recent years, ML techniques including ANN, support vector machine and regression, and decision trees have been used to extract reservoir operation rules.
- Decision trees are simple and easy to interpret, because they follow a Boolean logic ('true or false') in the partitioning process which is similar to the decision-making real-world reservoir operation.
- GDROM: couples a HM-DT with a classification model that determines which module derived from the HM-DT to apply given a hydroclimatic condition.
- The GDROM is generic for reservoirs for various operations functions, capacities and locations.

The GDROM

- Combination between a Hidden Markov Decision Tree and a classification tree.
- 2. The GDROM combines the identified operation modules and the module application conditions to simulate reservoir releases
- 3. Input data: historical inflow, storage, release, DOY and PDSI (not used in this work).

SWAT+ GDROM

Reservoir_conditions_module.f90 Res_rel_ctbl.f90

GDROM Modules Conditions (boolean logic) in a form of .dat file

Case Study: Paranapanema river in the Upper Parana River Basin

Study Area

- 1. Drainage Area: 100,800 km2
- 2. Annual avg PCP: 1400 mm
- 3. Climate: Subtropical
- Four large multipurpose hydroelectric dams have been installed: Jurumirim, Chavantes, Capivara and Rosana

Taken from Acosta et al. 2023

Jurumirim

Chavantes

Calibration Results

Reservoir	NSE	PBIAS	R2	KGE
Jurumirim	0.14	-22.22	0.38	0.15
Capivara	0.40	-15.41	0.53	0.64
Chavantes	0.35	-12.53	0.42	0.44
Rosana	0.37	-21.34	0.61	0.67

Conclusion

- A new ML method is available for depicting DT rules for reservoir release.
- New routines were added to SWAT+ that allows to use the decoded rules from the GDROM. New res_conds.dat file is necessary for reading the rules. The routines are present in the new SWAT+ release.
- The GDROM (or any reservoir models developed separately from a host hydrological model) can improve by adding additional variable, but if we want to go further with our results we must compromise with the host hydrological model by dropping variables that cannot be provided during simulations.
- The GDROM code is available in github: <u>https://github.com/lidh966/GDROM</u>

Development of reservoir operation functions in SWAT+ using a generic data-driven reservoir operation model

Thank you! Merci! Gracias! ありがとう! Questions?

res_cor	nds.dat paranapanema ri	iver				
16						
ctbl_ro	osana 32 4					
5	inflo <= 113892479.9	inflo <= 83840830.2	stor <= 1918228245.0	day <= 137	day <= 41	1
5	inflo <= 113892479.9	inflo <= 83840830.2	stor <= 1918228245.0	day <= 137	day > 41	0
5	inflo <= 113892479.9	inflo <= 83840830.2	stor <= 1918228245.0	day > 137	day <= 319	2
5	inflo <= 113892479.9	inflo <= 83840830.2	stor <= 1918228245.0	day > 137	day > 319	1

5 inflo <= 297487732.2 inflo <= 111481055.7 inflo <= 85784830.2 inflo <= 63920017.7 inflo <= 50068800.1 46008235.0
7 inflo <= 297487732.2 inflo <= 111481055.7 inflo <= 85784830.2 inflo <= 63920017.7 inflo > 50068800.1 stor <= 1952729049.8 stor <= 1898979076.9 66359391.5
8 inflo <= 297487732.2 inflo <= 111481055.7 inflo <= 85784830.2 inflo <= 63920017.7 inflo > 50068800.1 stor <= 1952729049.8 stor > 1898979076.9 inflo <= 61549200.1 56360307.0</pre>