2023 SWAT Conference - Aarhus, Denmark

Friday, 30 June / Session H1: Hydrology

## Enhancing Spatiotemporal Simulation of Groundwater and Surface Water Conditions Using Deep Learning and Physics-based Modeling

Soobin Kim, Eunhee Lee, Hyoun-Tae Hwang, Jongcheol Pyo, Daeun Yun, Sang-Soo Baek\*, and Kyung Hwa Cho\*



Soobin Kim

Ulsan National Institute of Science Technology, Republic of Korea School of Urban and Environmental Engineering Water-Environmental Informatics Laboratory (WEIL), Bldg. 113-405 Email: skim.env@gmail.com / Phone: +82-10-2584-6940



## Contents



# 2023 SWAT Conference - Aarhus, Denmark / Soobin Kim





# Water quantity concerns

# Introduction



**Urbanization** and **climate change** pose a risk to drinking water resources, aquatic ecosystems, public health, and the economy

To minimize the impacts, government agencies and research groups have developed advanced systems for <u>emergency</u> response, <u>early warning</u>, and <u>water quality/quantity management</u>

- South Korea operates the Water Pollution Control Information System, utilizing <u>a hydrodynamic/water quality model</u> (Kim, J. et al., 2022; Mun et al., 2012)
- China has established <u>a rapid emergency response framework</u> for detecting and removing water pollutants (Zhang, X.-j. et al. (2011))
- **Rui et al. (2015)** developed <u>an emergency response system</u> by integrating <u>hydraulic and water quality models</u>, and <u>GIS</u>

#### **Modeling approaches**

Provide valuable **spatiotemporal information** on **hydrological conditions and water quality**, which **supports decision-making** regarding <u>flushing and dilution activities</u>, <u>vulnerability mapping</u>, as well as <u>risk assessment</u>

(Guzman et al., 2015; Zhou et al., 2013; Choi et al., 2014; Martin et al., 2004)

# Main modeling approaches

# Introduction

### **Process-based (Physics-based)**

- A mathematical representation of the environmental processes
- Simulating spatial-temporal variations of water quantity/quality variables by solving numerical solutions
  - Watershed model (e.g., SWAT)
  - Integrated surface-subsurface models (e.g., HGS)
  - Urban catchment models (e.g., SWMM)
  - Hydrodynamic/water quality models (e.g., EFDC-NIER)



### **Data-driven (Deep learning)**

- A subset of machine learning inspired by the structure and function of the human brain
- Deep learning (DL) algorithm adjusts and fits itself using given data, through multiple processing layers, and it allows the model to make predictions
- Outperforms in **processing complex data** (e.g., video and image) and **performing extensive computations** 
  - Convolutional neural network (CNN)
  - Long short-term memory (LSTM)
  - Graph neural network (GNN)

To address the limitations of complex process-based modeling, ...



| Main<br>objective    | To evaluate <b>the applicability of deep learning (DL)</b> to simulate <b>spatiotemporal changes in<br/>water quantity</b>                                                                                                                                                            |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem<br>statement | <ol> <li>Most previous studies have focused on temporal hydrologic simulations using DL</li> <li>In previous studies, the spatial resolution of DL models needs improvement</li> <li>Acquiring high-resolution data is challenging due to high operational and labor costs</li> </ol> |
| Approach             | <ol> <li>Employing convolutional neural networks (CNNs) to simulate hydrologic conditions in a high spatial resolution</li> <li>Synthesizing high-resolution spatial data based on the simulation results generated by a fully distributed hydrologic model</li> </ol>                |

# 2023 SWAT Conference - Aarhus, Denmark / Soobin Kim Materials and methods





# Study site & Physic-based model description

atershed outlet

Stream network

Gauge station

Dam

Elevation (amsl)

\_ow:0

20 Kilometers

High : 600

Weather station

### Sabgyo Stream Watershed (SSW)

- Midwestern part of South Korea (36.395796–36.911621° N, 126.596445–127.213928° E)
- A drainage area: 1650 km<sup>2</sup>
- A stream length: 65 km
- Covered by forest (44.5%), cropland (42.9%), and urban areas







8

### HydroGeoSphere (HGS)

- A fully distributed, surface-subsurface integrated hydrologic model for • watershed simulations
- Based on topological, geographical, geological, and meteorological datasets such as elevation, land cover, soil type, geology, and rainfall

3D domain: 89530 nodes&156420 elements 2D domain: 17380 nodes (a mean length of 420 m)

Model period: 2012-2018 (monthly)

#### Model calibration:

Groundwater level & surface water discharge by varying hydraulic conductivities

# **Deep learning model for hydrologic simulations**



### Model implementation involves six steps:

(A) Hydrologic simulation using the HGS model (obtained from Lee et al., 2023)

**(B-C)** Preparation of DL datasets

(D) DL model setup

(E) Optimization of the input data and DL model

- (F) Hydrologic simulation using the optimal DL model
- (G) Future hydrologic prediction

(using MATLAB software)

### List of input data for DL

| Data type           | Component                    | Source                                                                               |  |  |  |  |
|---------------------|------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
|                     | Digital elevation model      | National Geographic Information Institute                                            |  |  |  |  |
| l opographic data   | Weathered rock elevation     | 1) Geotechnical Information DB System; 2)<br>National Groundwater Information Center |  |  |  |  |
| Morphologia data    | Stream network               | Water Resources Management Information                                               |  |  |  |  |
| morphologic data    | Watershed boundary           | System                                                                               |  |  |  |  |
|                     | Land cover                   | Ministry of Environment                                                              |  |  |  |  |
| Geographic data     | Vegetation cover             | National Institute of Agricultural Sciences                                          |  |  |  |  |
|                     | Soil type                    | National Institute of Agricultural Sciences                                          |  |  |  |  |
| Hvdrometeorological | Rainfall                     | Korea Meteorological Administration                                                  |  |  |  |  |
| data                | Potential evapotranspiration | Calculated using the simplified FAO Penman-<br>Monteith equation (Valiantzas, 2006)  |  |  |  |  |
|                     | Initial hydraulic head       | SSW model simulation (Lee et al., 2023)                                              |  |  |  |  |
| myarologic data     | Initial water depth          | SSW model simulation (Lee et al., 2023)                                              |  |  |  |  |
| Temporal data       | Data time (month)            | -                                                                                    |  |  |  |  |

# Data processing for DL model



### For the DL modeling,

- monthly results from 2012 to 2018 were utilized
- data from 2013 to 2018 were used for training & validation
- data from 2012 served as the look-back (*lb*) period

- Data processing for the DL model involved three steps:
- (1) Converting the unstructured SSW model outputs
   (triangular) into a gridded format (200 m resolution)
   suitable for CNN algorithm (using a 'linear' interpolation method (MATLAB, R2022b))
- (2) Extracting spatiotemporal information from the topological, morphological, geographical, hydrometeorological, and hydrologic data within the study site
- (3) Transforming the input data into a 2D representation

### Simulation target:

- Groundwater head & Surface water depth derived from the SSW model
- Considered the simulation results as a ground truth of DL 10

# **Convolutional neural networks (CNNs)**

#### **CNN** algorithm



### Convolutional neural networks (CNNs)

Promising DL technique for multi-dimensional data processing to extract spatial features using convolutional filters [LeCun, Bengio, & Hinton, 2015; Deng et al., 2009]



- **Hussain et al. (2020)** used a 1D-CNN to predict streamflow for daily, weekly, and monthly forecasting
- **Pyo et al. (2020)** identified a potential of CNN model for short-term prediction of harmful algae in river
- Xia et al. (2023) proposed a residual dense CNN for groundwater contamination source identification

**Regression output** 

# 2023 SWAT Conference - Aarhus, Denmark / Soobin Kim Results and discussions







# Groundwater and surface water simulations

### Results of HGS model calibration

based on observed data prepared under monthly normal conditions



### HGS model parameters

| Parameter                                      | Value                                                               | Source                                                  |  |  |
|------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Manning's roughness<br>coefficients¶           | 0.0016 (Urban) – 0.03 (Forest)                                      | Chow (1959); HT. Hwang<br>et al. (2021)                 |  |  |
| Rill storage height <sup>¶</sup>               | 2.0x10 <sup>-5</sup> (urban) – 5.0x10 <sup>-3</sup> (Wetland)       | HT. Hwang et al. (2021); P<br>anday and Huyakorn (2004) |  |  |
| Obstruction storage h<br>eight <sup>¶</sup>    | 1.0x10 <sup>-5</sup> (Urban) – 5.0x10 <sup>-3</sup> (Wetland)       | HT. Hwang et al. (2021); P<br>anday and Huyakorn (2004) |  |  |
| Hydraulic conductivity <sup>¶¶*</sup><br>(m/s) | 1.0x10 <sup>-10</sup> (Basement rock) –2.60x10 <sup>-2</sup> (Sand) | HT. Hwang et al. (2021)                                 |  |  |
| Specific storage <sup>¶¶</sup>                 | 1x10 <sup>-4</sup> –5.0x10 <sup>-4</sup>                            | Freeze and Cherry (1979)                                |  |  |
| Porosity <sup>¶¶</sup> (-)                     | 0.05 (Basement rock) – 0.35 (Soil)                                  | Freeze and Cherry (1979)                                |  |  |
| Leaf area index (LAI)                          | 0.26–2.9 (Vegetation) – 0.45–4.1 (Deciduous)                        | Myneni et al. (2015)                                    |  |  |

13 I indicates the surface flow parameters; II indicates the subsurface flow parameters; \* indicates the calibration parameter.

### Results of CNN model training and validation

CNN performance with respect to the number of spatial data points (n)



### Surface water depth (m)

 $\bigcirc$  Training ~ imes~ Validation



n = 100, 300, and 500 were selected as simulation point among 41703 grid cells (within the watershed)

# **CNN model performance and optimal sets**

### Results of model optimization : A) groundwater level (m) and B) surface water depth (m)

|   | Spatial | Input design |    | CNN type     | Hyperparameters |         |           | Model performance |           |       |      |                   |                    |              |      |
|---|---------|--------------|----|--------------|-----------------|---------|-----------|-------------------|-----------|-------|------|-------------------|--------------------|--------------|------|
| - |         | n            | wd | lh           | Structure       | Mini-   | Ontimizor | Learning          |           | RMSE  | (m)  |                   | R                  | 2            | -    |
|   | _       |              |    | wa           |                 | WA ID   | Structure | size              | Optimizer | rate  | ۲r۹  | Val <sup>¶¶</sup> | Map <sup>¶¶¶</sup> | Tr¶          | Val¶ |
| A | 100     | 15           | 12 | MobileNet-v2 | 127             | Adam    | 0.001     | 2.18              | 2.43      | 38.82 | 1.00 | 1.00              | 0.74               |              |      |
|   | 300     | 15           | 12 | ResNet-101   | 130             | RMSProp | 0.001     | 2.98              | 3.12      | 20.89 | 1.00 | 1.00              | 0.91               |              |      |
|   | 500     | 15           | 12 | ResNet-101   | 130             | RMSProp | 0.001     | 3.01              | 3.03      | 19.63 | 1.00 | 1.00              | 0.93               | Optima       |      |
| В | 100     | 15           | 12 | ResNet-50    | 256             | Adam    | 0.003     | 0.14              | 0.14      | 0.44  | 0.97 | 0.97              | 0.06               | DL           |      |
|   | 300     | 15           | 12 | ResNet-101   | 132             | Adam    | 0.001     | 0.13              | 0.14      | 0.41  | 0.98 | 0.98              | 0.17               |              |      |
|   | 500     | 3            | 12 | ResNet-50    | 256             | RMSProp | 0.005     | 0.15              | 0.15      | 0.32  | 0.97 | 0.97              | 0.47               | Optima<br>DI |      |

- Optimized the number of spatial data points (*n*), input window (*wd*) size, look-back (*lk*) size of input data,
   CNN structure, and hyperparameters
- Investigated **DL model performance** based on **the amount of spatial information**
- ResNet models showed the highest model performance among eight CNN structures

# Spatiotemporal mapping results (groundwater)



# Spatiotemporal mapping results (surface water)





### Surface water depth

Simulations results simulated by the A) optimal CNN and B) HGS models

The average RMSE and R<sup>2</sup> values of 0.32 m and 0.37, respectively (during 2013-2018)

- Underestimated the surface water depth near the watershed outlet

- Estimated more waterbodies in the upstream region than the HGS model

This was because data close to the watershed boundary were not included in the input dataset, resulting in a low prediction performance at the boundary.

Simulation time: HGS: 6.164 h (4 CPUs) CNN: 0.138 h (1 GPU) → 44.54 times reduced!

# Future hydrologic response predictions using optimal DL









Projection of climate change in the study site

| Climate component     |       | RCP 2.6          | RCP 8.5          |  |  |
|-----------------------|-------|------------------|------------------|--|--|
| Monthly rainfall (mm) | 2020s | 99.28±117.07     | 92.33±109.70     |  |  |
|                       | 2080s | 96.35±111.74     | 103.27±127.92    |  |  |
| Moon tomporature (°C) | 2020s | 12.77±9.51       | 12.51±9.55       |  |  |
|                       | 2080s | $13.30 \pm 9.46$ | 15.95±9.80       |  |  |
| $\mathbf{D}_{0}$      | 2020s | 71.98±6.87       | 71.47±6.67       |  |  |
|                       | 2080s | 71.70±6.38       | $72.84 \pm 6.35$ |  |  |
| Mean wind aread (m/a) | 2020s | 2.72±0.44        | 2.72±0.44        |  |  |
| Mean wind speed (m/s) | 2080s | 2.73±0.43        | 2.66±0.44        |  |  |
|                       |       |                  |                  |  |  |

**2020s**: 2011–2040 & **2080s**: 2071–2100

Using an optimal DL, spatiotemporal maps of predicted surface water depth under RCP 2.6, 8.5

The **DL model underestimated** the surface water depth **near the outlet of the watershed** 

This was because **future climate conditions** were **not considered in training CNN model** 

The **DL-based surface water predictions** particularly **deteriorated under RCP 8.5**, compared to the predictions under RCP 2.6

**RCP 2.6** 

# 2023 SWAT Conference - Aarhus, Denmark / Soobin Kim





# Conclusion

| Conclusion    | 1.<br>2.<br>3.<br>4. | <ul> <li>Deep learning models significantly reduced simulation time, compared to fully distributed physics-based model</li> <li>ResNet models showed the highest model performance</li> <li>Combining the fully distributed model results, deep learning can simulate both groundwater and surface water, providing a high spatial-resolution results</li> <li>Our approach could be a computational efficient method for simulating spatiotemporal changes in complex water systems</li> </ul> |
|---------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Novelty       | <b>1.</b><br>2.      | <b>Few studies</b> have applied deep learning models combined with a fully distributed hydrologic model to provide high spatial resolution results<br>Investigating deep learning model performance based on the amount of spatial information                                                                                                                                                                                                                                                  |
| cknowledgment | This<br>Deve<br>(MOI | work was supported by Korea Environment Industry & Technology Institute (KEITI) through Advanced Technology<br>elopment Project for Predicting and Preventing Chemical Accidents Project, funded by Korea Ministry of Environment<br>E) (2022003620001).                                                                                                                                                                                                                                        |

# Summary

### Main findings

- 1) Deep learning models cost-effectively simulated the spatiotemporal groundwater/surface water conditions
- 2) Deep learning models significantly reduced simulation time, compared to fully distributed physics-based model



### **Publication information**

Spatiotemporal Simulation of Groundwater and Surface Water Integrating Deep Learning and Physics-Based Watershed Models (Will be submitted to Water Research) Soobin Kim<sup>a</sup>, Eunhee Lee<sup>b</sup>, Hyoun-Tae Hwang<sup>c,d</sup>, Jongcheol Pyo<sup>e</sup>, Daeun Yun<sup>a</sup>, Sang-Soo Baek <sup>f,\*</sup>, and Kyung Hwa Cho<sup>a,g,\*</sup>

<sup>a</sup> School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; <sup>b</sup> Korea Institute of Geoscience and Mineral Resources; 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea; <sup>c</sup> Aquanty, Inc., 564 Weber Street North, Unit 12, Waterloo, Ontario N2 L 5C6, Canada; <sup>d</sup> Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; <sup>e</sup> Department of Environmental Engineering, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, South Korea; <sup>f</sup> Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea; <sup>g</sup> Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea

2023 SWAT Conference - Aarhus, Denmark

Friday, 30 June / Session H1: Hydrology



Enhancing Spatiotemporal Simulation of Groundwater and Surface Water Using Deep Learning and Physics-based Modeling

CONTACT

Soobin Kim

Ulsan National Institute of Science Technology, South Korea Department of Urban and Environmental Engineering Water-Environmental Informatics Laboratory (WEIL), Bldg. 113-405 Email: skim.env@gmail.com / Phone: +82-10-2584-6940

