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Water quantity concerns Introduction
https://www.chicagoriver.org/

Surface Water

Hydrological responses to 
climate change impact

Groundwater

Urbanization and climate change pose a risk to 

drinking water resources, aquatic ecosystems, public 

health, and the economy

To minimize the impacts, government agencies and research

groups have developed advanced systems for emergency 

response, early warning, and water quality/quantity management

• South Korea operates the Water Pollution Control Information System, 
utilizing a hydrodynamic/water quality model (Kim, J. et al., 2022; Mun et 
al., 2012)

• China has established a rapid emergency response framework for 
detecting and removing water pollutants (Zhang, X.-j. et al. (2011))

• Rui et al. (2015) developed an emergency response system by 
integrating hydraulic and water quality models, and GIS

Provide valuable spatiotemporal information on 

hydrological conditions and water quality, which supports 

decision-making regarding flushing and dilution activities, 

vulnerability mapping, as well as risk assessment

Modeling approaches 

(Guzman et al., 2015; Zhou et al., 2013; Choi et al., 2014; Martin et al., 2004)



Process-based (Physics-based) Data-driven (Deep learning)

Main modeling approaches Introduction

• A mathematical representation of the environmental 
processes

• Simulating spatial-temporal variations of water quantity/quality 
variables by solving numerical solutions

• A subset of machine learning inspired by the structure and 
function of the human brain

• Deep learning (DL) algorithm adjusts and fits itself using 
given data, through multiple processing layers, and it 
allows the model to make predictions

• Outperforms in processing complex data (e.g., video and 
image) and performing extensive computations
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To address the limitations of 
complex process-based 
modeling, … 

- Watershed model (e.g., SWAT)
- Integrated surface-subsurface models (e.g., HGS)
- Urban catchment models (e.g., SWMM)
- Hydrodynamic/water quality models (e.g., EFDC-NIER)

- Convolutional neural network (CNN)
- Long short-term memory (LSTM)
- Graph neural network (GNN)

[E. Lee, Lee, Park, Hwang, and Park (2023)]

Computationally 
expensive & 

Data-intensive

Complex 
Hydrologic/Hydrodynamic/

Water quality processes



Problem 
statement

1. Most previous studies have focused on temporal hydrologic simulations using DL

2. In previous studies, the spatial resolution of DL models needs improvement 

3. Acquiring high-resolution data is challenging due to high operational and labor costs 

Main 
objective

To evaluate the applicability of deep learning (DL) to simulate spatiotemporal changes in 
water quantity 

Approach

1. Employing convolutional neural networks (CNNs) to simulate hydrologic conditions in a high 

spatial resolution

2. Synthesizing high-resolution spatial data based on the simulation results generated by a 

fully distributed hydrologic model

Objective and approaches
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Introduction
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Study site & Physic-based model description
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Sabgyo Stream Watershed (SSW)

[E. Lee, Lee, Park, Hwang, and Park (2023)]

watershed outlet
Mesh generation

(Using 
Algomesh)

• A fully distributed, surface-subsurface integrated hydrologic model for 
watershed simulations

• Based on topological, geographical, geological, and meteorological 
datasets such as elevation, land cover, soil type, geology, and rainfall 

HydroGeoSphere (HGS)
Model domain: 
3D domain: 89530 nodes&156420 elements
2D domain: 17380 nodes (a mean length of 420 m)

Model period: 2012-2018 (monthly)

Model calibration: 
Groundwater level & surface water discharge by 
varying hydraulic conductivities

• Midwestern part of South Korea (36.395796–36.911621° N, 126.596445–127.213928° E)

• A drainage area: 1650 km2

• A stream length: 65 km
• Covered by forest (44.5%), 

cropland (42.9%), and urban areas 

Lee, E., Lee, H., Park, D., Hwang, H. T., & Park, C. (2023). 
Application of Different Weighting Schemes and Stochastic 
Simulations to Parameterization Processes Considering 
Observation Error: Implications for Climate Change Impact 
Analysis of Integrated Watershed Models. Water, 15(10), 1880.



Deep learning model for hydrologic simulations
Model implementation involves six steps: 

Data type Component Source

Topographic data
Digital elevation model National Geographic Information Institute

Weathered rock elevation 1) Geotechnical Information DB System; 2) 
National Groundwater Information Center

Morphologic data
Stream network Water Resources Management Information 

SystemWatershed boundary

Geographic data

Land cover Ministry of Environment

Vegetation cover National Institute of Agricultural Sciences

Soil type National Institute of Agricultural Sciences

Hydrometeorological 
data

Rainfall Korea Meteorological Administration

Potential evapotranspiration Calculated using the simplified FAO Penman-
Monteith equation (Valiantzas, 2006)

Hydrologic data
Initial hydraulic head SSW model simulation (Lee et al., 2023)

Initial water depth SSW model simulation (Lee et al., 2023)

Temporal data Data time (month) -9

List of input data for DL

(A) Hydrologic simulation using the HGS model (obtained from Lee et al., 2023)

(B-C) Preparation of DL datasets
(D) DL model setup
(E) Optimization of the input data and DL model
(F) Hydrologic simulation using the optimal DL model
(G) Future hydrologic prediction

(using MATLAB software)



Data processing for DL model 
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Data processing for the DL model involved three steps: 

For the DL modeling, 

- monthly results from 2012 to 2018 were utilized 

- data from 2013 to 2018 were used for training & validation 

- data from 2012 served as the look-back (lb) period

(1) Converting the unstructured SSW model outputs 

(triangular) into a gridded format (200 m resolution) 

suitable for CNN algorithm (using a 'linear’ interpolation method (MATLAB, R2022b))

(2) Extracting spatiotemporal information from the topological, 

morphological, geographical, hydrometeorological, and 

hydrologic data within the study site

(3) Transforming the input data into a 2D representation 

Simulation target: 

- Groundwater head & Surface water depth derived from the 

SSW model 

- Considered the simulation results as a ground truth of DL



Data preprocessing Model building & training Model test & prediction

Convolutional neural networks (CNNs)
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• Meteorological data
Temperature
Precipitation

• Hydrologic data
Water level
Water velocity

• Geographic data
Land cover
Soil type

Convolutional neural networks (CNNs)

Convolution
Layer

Input
(Image)

Pooling
Layer

Fully-connected
Layer

Output
(Regression)

Feature Extraction Regression
Quantification

𝑦𝑦 = 𝑓𝑓 ∑𝑥𝑥 ∗ 𝑤𝑤 + 𝑏𝑏   

𝑧𝑧 = max 0, 𝑥𝑥  

(1) Convolution

(2) Pooling (Max pooling)

• Hussain et al. (2020) used a 1D-CNN to predict streamflow for daily, 
weekly, and monthly forecasting

• Pyo et al. (2020) identified a potential of CNN model for short-term 
prediction of harmful algae in river

• Xia et al. (2023) proposed a residual dense CNN for groundwater 
contamination source identification

Source: IBM
Source: Javapoint

Deep neural network

Image 
(Gridded data) Convolved

Feature

Regression outputy

Fully-connected
(FC) Layer

CNN algorithm

Promising DL technique for multi-dimensional data processing to extract spatial  features 
using convolutional filters [LeCun, Bengio, & Hinton, 2015; Deng et al., 2009]
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Groundwater and surface water simulations

based on observed data prepared under monthly normal conditions
Results of HGS model calibration 

n = 100, 300, and  500 were selected as simulation point  
among 41703 grid cells (within the watershed)

CNN performance with respect to the number of spatial data points (n) 

Parameter Value Source
Manning’s roughness 

coefficients¶ 0.0016 (Urban) – 0.03 (Forest) Chow (1959); H.-T. Hwang 
et al. (2021)

Rill storage height¶ 2.0x10-5 (urban) – 5.0x10-3 (Wetland) H.-T. Hwang et al. (2021); P
anday and Huyakorn (2004)

Obstruction storage h
eight¶ 1.0x10-5 (Urban) – 5.0x10-3 (Wetland) H.-T. Hwang et al. (2021); P

anday and Huyakorn (2004)

Hydraulic conductivity¶¶* 
(m/s) 1.0x10-10 (Basement rock) –2.60x10-2 (Sand) H.-T. Hwang et al. (2021)

Specific storage¶¶ 1x10-4–5.0x10-4 Freeze and Cherry (1979)

Porosity¶¶ (-) 0.05 (Basement rock) – 0.35 (Soil) Freeze and Cherry (1979)

Leaf area index (LAI) 0.26–2.9 (Vegetation) – 0.45–4.1 (Deciduous) Myneni et al. (2015)

HGS model parameters

¶ indicates the surface flow parameters; ¶¶ indicates the subsurface flow parameters; 
* indicates the calibration parameter.
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Groundwater head (m)

Surface water depth (m)

Results of CNN model training and validation



 

 Spatial  Input design  CNN type  Hyperparameters  Model performance 
 

n 
 

wd lb 
 

Structure 
 Mini-

batch 
size 

Optimizer Learning 
rate 

 RMSE (m)   R2 

    Tr¶ Val¶¶ Map¶¶¶  Tr¶ Val¶¶ Map¶¶¶ 

A 
100  15 12  MobileNet-v2  127 Adam 0.001  2.18 2.43 38.82  1.00 1.00 0.74 

300  15 12  ResNet-101  130 RMSProp 0.001  2.98 3.12 20.89  1.00 1.00 0.91 

500  15 12  ResNet-101  130 RMSProp 0.001  3.01 3.03 19.63  1.00 1.00 0.93 

B 

100  15 12  ResNet-50  256 Adam 0.003  0.14 0.14 0.44  0.97 0.97 0.06 

300  15 12  ResNet-101  132 Adam 0.001  0.13 0.14 0.41  0.98 0.98 0.17 

500  3 12  ResNet-50  256 RMSProp 0.005  0.15 0.15 0.32  0.97 0.97 0.47 

Optimal 
DL

Optimal 
DL

CNN model performance and optimal sets
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 Results of model optimization : A) groundwater level (m) and B) surface water depth (m)

- Optimized the number of spatial data points (n), input window (wd) size, look-back (lk) size of input data, 

CNN structure, and hyperparameters 

- Investigated DL model performance based on the amount of spatial information

- ResNet models showed the highest model performance among eight CNN structures
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Spatiotemporal mapping results (groundwater)
Groundwater heads

Simulations results simulated by the A) optimal 
CNN and B) HGS models

The average RMSE and R2 values of 19.63 m 
and 0.93, respectively (during 2013-2018)

- Underestimated the groundwater head in the
mountainous areas of the watershed

It might be because of the uncertainties in 
data processing

e.g., the conversion of the HGS data from 
triangular mesh into gridded data for the 
CNN input  



Surface water depth 
Simulations results simulated by the A) optimal 
CNN and B) HGS models

The average RMSE and R2 values of 0.32 m 
and 0.37, respectively (during 2013-2018)

- Underestimated the surface water depth
near the watershed outlet
- Estimated more waterbodies in the
upstream region than the HGS model

This was because data close to the 
watershed boundary were not included in 
the input dataset, resulting in a low 
prediction performance at the boundary. 

Spatiotemporal mapping results (surface water) 

Simulation time: 

HGS: 6.164 h (4 CPUs) 

CNN: 0.138 h (1 GPU)

 44.54 times reduced! 16
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Future hydrologic response predictions using optimal DL

Using an optimal DL, spatiotemporal maps of 
predicted surface water depth under RCP 2.6, 8.5

The DL model underestimated the surface water 
depth near the outlet of the watershed

This was because future climate conditions 
were not considered in training CNN model

The DL-based surface water predictions 
particularly deteriorated under RCP 8.5, 
compared to the predictions under RCP 2.6 

Climate component RCP 2.6 RCP 8.5

Monthly rainfall (mm)
2020s 99.28±117.07 92.33±109.70
2080s 96.35±111.74 103.27±127.92

Mean temperature (°C)
2020s 12.77±9.51 12.51±9.55
2080s 13.30±9.46 15.95±9.80

Relative humidity (%)
2020s 71.98±6.87 71.47±6.67
2080s 71.70±6.38 72.84±6.35

Mean wind speed (m/s)
2020s 2.72±0.44 2.72±0.44
2080s 2.73±0.43 2.66±0.44

2020s: 2011–2040 & 2080s: 2071–2100

Projection of climate change in the study site
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Novelty

1. Few studies have applied deep learning models combined with a fully distributed 
hydrologic model to provide high spatial resolution results

2. Investigating deep learning model performance based on the amount of spatial 
information

Conclusion
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Conclusion

1. Deep learning models significantly reduced simulation time, compared to fully 
distributed  physics-based model

2. ResNet models showed the highest model performance
3. Combining the fully distributed model results, deep learning can simulate both 

groundwater and surface water, providing a high spatial-resolution results
4. Our approach could be a computational efficient method for simulating 

spatiotemporal changes in complex water systems



Research implications

Main findings 

1) Deep learning models cost-effectively simulated the spatiotemporal groundwater/surface water conditions

2) Deep learning models significantly reduced simulation time, compared to fully distributed  physics-based model

Model Development Water quality/quantity
Management

• Model integration
• Sophisticated deep learning model

• HGS & CNN models for 
simulating hydrologic conditions

• Investigating the optimal sets in 
hydrologic simulations

• Reducing computational costs

Model Application
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