Applications of the modified SWAT model in karstic-influenced basins: some examples from karstic basins in Iran

Mohammad Reza Eini, Haniyeh Salmani, Saman Javadi, Majid Delavar

Warsaw University of Life Sciences, Warsaw, Poland

University of Salamanca, Salamanca, Spain

University of Tehran, Tehran, Iran

Tarbiat Modeares University, Tehran, Iran

Why?

- About 25% of the world's population relies on water stored in karst aquifers
- Karst formations are unique in realm of hydrology
- High infiltration rate and complex recharge characteristics
- Random and undefined pattern on surface and riverbeds
- Hydrological modeling can be challenging

What is a karst formation?

Karst is a type of landscape where the dissolving of the bedrock has created sinkholes, sinking streams, caves, springs, and other characteristic features.

CO ₂ +	$H_2O \rightarrow$ water	H ₂ CO ₃ carbonic acid
CACO ₃ limestone	+ H ₂ CO ₃ carbonic acid	$ \rightarrow Ca(HCO_3)_2 $ calcium bicarbonate

Source: https://doi.org/10.3390/w15050954

Aims

- Modifying SWAT to have a better estimations for water budget
- Water Accounting assessments in karstic regions
- Interaction of surface and groundwater resources
- Improving groundwater module in SWAT
- Testing different approaches in model developments

Past works (SWAT and modified SWAT)

5	Study	Catchment (region ^a , country/ SWAT modeling method km ²)		Streamflow testing time	NSE Daily		NSE Monthly	
		Kiii)		periods	Cal	Val	Cal	Val
5	Spruill et al. (2000)	Univ. of KY Research Site (Kentucky, U.S./5.5)	SWAT	Cal: 1995 Val: 1996	-0.04	0.19	0.58	0.89
0	Coffey et al. (2004)	Univ. of KY Research Site (Kentucky, U.S./5.5)	SWAT	Cal: 1995 Val: 1996	0.09	0.15	0.41	0.61
1	Afinowicz et al. (2005)	North Fork, Upper Guadalupe River (Texas, U.S./360)	Modified SWAT (modified surface runoff & recharge algorithms)	Cal: 1992–1996 Val: 1997-2003 ^c	0.40	0.09	0.29	0.50
H	Benham et al. (2006)	Shoal Creek (Missouri, U.S./367)	SWAT	Cal: 1999-2000 ^c Val: 2000-2001 ^c	0.21	0.54	0.63	0.61
F	Baffaut and Benson (2009)	James River (Missouri, U.S./ 3,600)	Modified SWAT (accounted for sinkholes & losing stream recharge)	Cal: 1983–2000 Val: 2001–2007	0.33-0.56	0.24-0.56	d_	-
< ⁵	Salerno and Tartari (2009)	Lake Pusiano (Lombardy, Italy/ 52.5)	SWAT; supported with Wavelet Analysis (WA)	Cal: 2001–2003 Val: 1977–1982	0.61/ 0.66 ^e	0.56/ 0.62 ^e	-	-
V	Vale and Holman (2009)	Bosherston Lakes (Wales, UK/-)	SWAT	Cal: 1995–2005 Val: 1984–1994	0.67- 0.74	0.56-0.74	-	-
I	Amatya and Jha (2011) ^f	Chapel Branch Creek (South Carolina, U.S./15.6)	SWAT	-	-	-	-	-
J	liang et al. (2011)	Shibetsu River (Island of Hokkaido, Japan/672)	SWAT	Cal: 2004–2006 Val: 2007–2008	0.58	0.51	-0.39/ 0.81 ^e	0.23/ 0.89 ^e
ľ	Nikolaidis et al. (2013)	Koiliaris River (Island of Crete, Greece/132 ⁸)	SWAT interface with two reservoir karst model	Cal: 2004–2006 Val: 2004–2007	0.43	0.62	0.61	0.77
ł	Palazón and Navas (2013)	Linsoles River (Central Pyrenees, Spain/284)	SWAT	Cal:2003-2005	-	-	0.57	-
I	Palanisamy and Workman (2014)	Cane Run Creek (Kentucky, U.S./115.6)	SWAT & KarstSWAT (accounted for effects of sinkholes & springs)	Cal: 2001–2003 Val: 2004–2006 ^h Val: 2001–2006 ^h	-1.28- 0.74 ^h 0.57-0.87 ^h	0.30–0.78 ^h 0.70–0.87 ^h	-	-
I	Wilson et al. (2014)	South Branch, Root River (Minnesota, U.S./301.8)	SWAT	Cal: 2004–2005 Val: 2006–2008	_	-	0.76	0.78
(Gamvroudis et al. (2015)	Evrotas River (Peloponnesus, Greece/1,348)	SWAT	Cal: 2009–2011 Val: 2004–2009	0.59- 0.80	0.54- 0.80	-	-

Past works (SWAT and modified SWAT)

Jain et al. (2015)	Nueces River Headwaters (Texas, U.S./	SWAT	Cal: 1960–1977	-	-	0.79	0.74
Malagò et al. (2015) ⁱ	Scandanavian Peninsula (Norway, Sweden, Finland/ 10 ⁶); Iberian Peninsula	SWAT	-	-	-	-	-
	(Spain, Portugal/556,000)						
Mehdi et al. (2015)	Altmühl River (Bavaria, Germany/980)	SWAT	Cal: 1964–1974	-	-	0.80-0.83	0.59-0.87
			Val: 1975–1984				
Nerantzaki et al. (2015)	Koiliaris River (Island of Crete, Greece/	SWAT interface with two reservoir	Val: 2010-2014	-	0.80	-	0.83
	130 ^g)	karst model					
Malagò et al. (2016)	Island of Crete	KSWAT; modified SWAT interface	Cal: 1989-2000 ¹	-	-	-2.38-0.83	-3.94-0.78
	(Greece/8,336)	with two reservoir karst model	Val: 1989-2000 ^j				
Tian et al. (2016)	Shibantang River	SWAT	Cal: 2000-2004	-	-	0.78	0.76
	(Guizhou, China/2,248)		Val: 2005–2010				
Amin et al. (2017) ^k	Spring Creek	SWAT & Topo-SWAT	Cal: 2002–2007	0.77/	0.68/	0.84/	0.83/
	(Pennsylvania, U.S./370)		Val: 2008-2013	0.79 ¹	0.73 ¹	0.85 ¹	0.82^{1}
Vigiak et al. (2017) ⁱ	Danube River (parts of 19 European countries/800,000)	SWAT	-	-	-	-	-
Sunde et al. (2018) ^m	Hinkson Creek	SWAT	Cal: 2007-2012 ^c	-	_	0.84	0.78
	(Missouri, U.S./231)		Val: 2013-2017 ^c				
Wang et al. (2019)	Xianghualing River	SWAT & Modified SWAT interface	Cal: 2016 ^c	0.63/	0.58/	_	-
-	(Hunan, China/26.8)	with three reservoir karst model	Val: 2016 ^c	0.83 ¹	0.81 ¹		
Merriman et al. (2019)	Upper East River	SWAT	Cal: 2005-2014	-	-	0.86	0.84
	(Wisconsin, U.S./375.3)		Val: 2015-2016				
Delavar et al. (2020)	Tashk-Bakhtegan	SWAT-FARS; interface with WA+	Cal: 1985-2006	-	-	$0.56-0.73^{n}$	$0.56-0.73^{n}$
	(Fars, Iran/27,520)	water accounting framework	Val: 2006-2014				
Martínez-Salvador and	Upper Argos River	SWAT	Cal: 1976-2000	-	-	0.62	0.70
Conesa-García (2020)	(Murcia, Spain/510)		Val: 2001-2017				
Nerantzaki et al. (2020)	Koiliaris River (Island of Crete, Greece/	SWAT & Karst-SWAT ^o	Cal: 2013-2017	0.59	-	0.81	-

Modifications

SWAT modifications for Karst

SWAT-ML

- This method is based on Baffaut and Benson (2009)
- A new parameter (X) was calibrated
- This parameter is non-dimensional and should be calibrated for karstic areas (HRUs)
- Return flow and delay time of infiltration were considred insignificant in karstic regions

SWAT-CF

- This method is based on crack flow module in SWAT
- Crack Flow (bypass flow) is used for vertisol soils
- Sol_CRK was calibrated in karstic areas (HRUs)
- There is no delay time and recharge directly goes to aquifer

SWAT-ML (Maharlu Lake)

For non-karstic areas (standard SWAT)

 $rchrg(j) = (1. -gw_{delay}(j)) * (sepbtm(j) + gwq_{ru}(j)) + gw_{delaye}(j) * rchrg1$

For karstic areas

 $rchrg(j) = (1. - (exp(-1. / ((gw_{delay}(j))/X)))) * (sepbtm(j) + gwq_{ru}(j)) + (exp(-1. / ((gw_{delay}(j))/X))) * rchrg1) + (exp(-1. / ((gw_{delay}(j))/X)) + (exp(-1. / ((gw_{delay}(j))/X))) + (exp(-1. / ((gw_{delay$

X can be calibrated for each HRU varies between $(0, +\infty)$

This approach is similar to the approach described by **Baffaut and Benson (2009).** Here, we have used the distributed approach.

SWAT-CF (Crack Flow)

For karstic areas ICRK was activated

volcr(l,j) = crlag * volcr(l,j) + (1.-crlag) * volcrnew

Based on modifications, the sinks can be formed in wet conditions and always are active.

Sol_CRK was calibrated for karstic regions!

SWAT-Karst-MODFLOW!

Past works (SWAT and modified SWAT)

Catchment descriptions, SWAT models and simulation method for SWAT studies reporting applications of bypass (crack) or preferential flow.

Study	Catchment (region, country/km ²)	SWAT model	Bypass (crack) or preferential flow method
Arnold et al. (2005)	Riesel Y-2 (Texas, U.S./0.5)	SWAT	Vertisol shrink/swell bypass flow module ^a
Fu et al. (2014)	Harp Lake (Ontario, Canada/5.4)	SWAT-Canadian Shield (SWAT-CS)	Continuous macropore & infiltration module
Fu et al. (2015)	Harp Lake (Ontario, Canada/5.4)	SWAT-Canadian Shield (SWAT-CS)	Continuous macropore & infiltration module
Baffaut et al. (2015)	Goodwater Creek (Missouri, U.S./73)	Modified SWAT	Claypan infiltration & lateral flow function
Zhang et al. (2016)	Harp Lake (Ontario, Canada/5.4 ^b)	SWAT-CS ^{enm}	Continuous macropore & infiltration module
Rahbeh et al. (2019)	Zarqa River (Jordan/3,900 ^c)	SWAT	Ad hoc representation of preferential flow
Delavar et al. (2020)	Tashk-Bakhtegan (Fars, Iran/27,520)	SWAT-FARS	Vertisol shrink/swell bypass flow module

				11	

More modifications

Aquifer presentation

Defining aquifer boundaries within subbasins and connecting HRUs which are in one aquifer

Study area

42,267 sq-km

Calibration

Multi-objective calibration:

Runoff ET Crop yields Base flow Amount of recharge Groundwater table

- Meteorological data(1980-2013)
- ✓ Precipitation
- ✓ Temperature (Max and Min)

Management data

- ✓ Irrigation amount of Spring Wheat, Grape, Olive, and Almond
- ✓ Fertilizer
- ✓ Plant/Harvest Date

Digital layers

- ✓ DEM (15 m)
- ✓ Soil (FAO, 1000 m)
- ✓ Land use (GLCC, 1000 m)

Measured data

- ✓ Discharge stations (1983-2013)
- ✓ Actual evapotranspiration (ETa) (2002)
- ✓ Crop yields (2012)

- Base Flow
- Deep aquifer recharge
- Return flow
- ✓ Comparison of results vs. estimated values by a lumped approach (Documents of Iran's Ministry of Energy)

Results

Almost no changes in river discharge calibration at Maharlu Lake basin

		R ²	R ²			NS		
Station		SWAT	SWAT-ML	SWAT-CF	SWAT	SWAT-ML	SWAT-CF	
Nahre Azam	Calibration	0.68	0.71	0.72	0.52	0.66	0.55	
	Validation	0.73	0.75	0.79	0.6	0.64	0.65	
Rode Khoshk	Calibration	0.72	0.75	0.75	0.72	0.77	0.69	
	Validation	0.81	0.80	0.69	0.78	0.77	0.77	
Bagh Safa	Calibration	0.6	0.64	0.55	0.6	0.62	0.65	
-	Validation	0.65	0.67	0.61	0.66	0.67	0.69	

Results of calibration and validation of SWAT, SWAT-ML, and SWAT-CF model.

Values of simulated product yield (kg / ha).

Plant	Yield (Kg/ha)	Yield (Kg/ha)				
	Observed	Simulated				
Wheat	5322	4638				
Olive	1461	1699				
Grape	3325	3035				

Comparison of simulated annual ETa (mm) values with observed ETa (mm) for 2002 (Andaryani et al., 2019).

	Wheat	Olive	Grape
SWAT	491	836	296
Observed	390	920	380

All related parameters were calibrated (and crop.dat parameters) (available in published papers)

Results

Significant changes in other water budget components

Model Infiltration (mm)		Deep aquifer recharge (mm)
SWAT-ML	282	11
SWAT-CF	238	16
SWAT	184	4

Evaluation of average infiltration values in a Karstic HRU with all Models.

Comparison coefficient of determination of calibrated baseflow by each model vs. observed baseflow.

	\mathbb{R}^2			NSE		
Discharge Stations	SWAT	SWAT-ML	SWAT-CF	SWAT	SWAT-ML	SWAT-CF
Nahre Azam Rode Khoshk Bagh Safa	0.58 0.66 0.31	0.61 0.71 0.37	0.57 0.7 0.33	0.61 0.62 0.45	0.69 0.7 0.46	0.61 0.67 0.45

The values of main components of the water budget in the study area. All figures are calibrated into MCM (Million Cubic Meter).

Approach	Precipitation	ЕТа	Runoff	Deep Aquifer Infiltration	Baseflow	Return Flow
SWAT	614	412.6	52	144	26.2	43
SWAT-ML	614	386.9	52.3	159	24.3	73
SWAT-CF	614	392.7	52	153	25.1	69
Ministry of	614	345.5	52.9	197	23.6	61

Source

Contents lists available at ScienceDirect

Catena

journal homepage: www.elsevier.com/locate/catena

Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed

CATEN

Mohammad Reza Eini^a, Saman Javadi^{a,*}, Majid Delavar^b, Philip W. Gassman^c, Ben Jarihani^{d,e}

^a Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran, Tehran, Iran

^b Department of Water Resources Engineering, Tarbiat Modares University, Tehran, Iran

^c Center for Agricultural and Rural Development, Iowa State University, Ames, IA 50011-1070, USA

^d Mountain Societies Research Institute, University of Central Asia, Khorog 736000, Tajikistan

^e Sustainability Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia

Results SWAT-MODFLOW-CF

Table 4 Results of calibration and validation of surface water using the implemented models

		SWAT-M0DFLOW	SWAT-MOI	DFLOW-CF
Discharge station		Calibration	Calibration	Validation
Khoshk	R^2	0/66	0/70	0/76
	NSE	0/62	0/66	0/64
Nahre Azam	R^2	0/70	0/75	0/8
	NSE	0/60	0/73	0/71

Table 5 Results of calibration and validation of groundwater level using the implemented models

Error coefficient	SWAT-MODFLOW Calibration	SWAT-MODFLOW-CF	
		Calibration	Validation
RMSE	1/77	1/33	2/47
MAE	1/23	1/01	2/39

Results

Amount of recharge

Results

Hydrogeology Journal (2023) 31:571–587 https://doi.org/10.1007/s10040-023-02620-x

REPORT

Compilation simulation of surface water and groundwater resources using the SWAT-MODFLOW model for a karstic basin in Iran

Haniyeh Salmani¹ · Saman Javadi² · Mohammad Reza Eini^{2,3} · Golmar Golmohammadi⁴

Received: 17 December 2021 / Accepted: 16 February 2023 / Published online: 9 March 2023 © The Author(s), under exclusive licence to International Association of Hydrogeologists 2023

Water Accounting Assessments Large scale basin (17 aquifers)

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Model-based water accounting for integrated assessment of water resources systems at the basin scale

Majid Delavar^{a,*}, Mohammad Reza Eini^b, Vahid Shokri Kuchak^a, Mohammad Reza Zaghiyan^a, Ali Shahbazi^c, Farhad Nourmohammadi^c, Ali Motamedi^c

^a Department of Water Engineering and Management, Tarbiat Modares University, Tehran, Iran

^b Department of Hydrology, Meteorology and Water Management, Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland

^c Khuzestan Water and Power Authority, Ahvaz, Iran

- SWAT have been used in karstic basins with different accuracies
- SWAT can be modified with different approaches in karstic regions
- In semi-dry regions, the difference between modified SWAT and SWAT can be seen in infiltration and ET amounts
- In different regions, according to the karst features, SWAT can be altered differently (e.g. riverbed)

Acknowledgments

- Supported by Khuzestan Water and Power Authority (KWPA), and Iran's Ministry of Energy.
- I would thank **Dr. Claire Baffaut** for her assistance in modifying the SWAT code.

NATIONAL SCIENCE CENTRE

Thanks for your attention!

Mohammad Reza Eini

Department of Hydrology, Meteorology, and Water Management Institute of Environmental Engineering Warsaw University of Life Sciences Warsaw, Poland

mohammad_eini@sggw.edu.pl