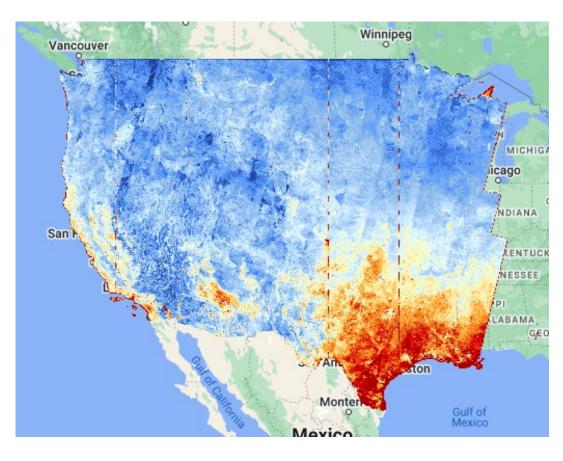


Evaluation of Evapotranspiration Simulations from the U.S. National Agroecosystems Model using OpenET Data


Kelly R. Thorp, USDA-ARS, Temple Michael J. White, USDA-ARS, Temple Nilesh Shinde, Univ. of Mass. K. Colton Flynn, USDA-ARS, Temple Natalia Čerkasova, Texas A&M, Temple Jeffrey G. Arnold, USDA-ARS, Temple

Introduction

OpenET (<u>https://etdata.org</u>)

- State-of-art satellite ET estimates for western CONUS
- Ensemble of six ET estimation approaches
- Monthly and annual data from 2016 to 2023
- 30 m spatial resolution
- Resolved to field scale •
- Access via Google Earth Engine
- National Agroecosystems Model (NAM) lacksquare
 - National implementation of SWAT+ model
 - Resolved to field scale
 - 217,712 fields resolved in Texas
 - 1,760,166 fields in western CONUS
- **Objectives**
 - Use OpenET data to evaluate NAM ET simulations in Texas and the western CONUS
 - Use NAM to evaluate strategies for addressing regional water availability issues in western CONUS

v 0.0.32

v 0.2.2

v 0.2.1

v 0.1.0

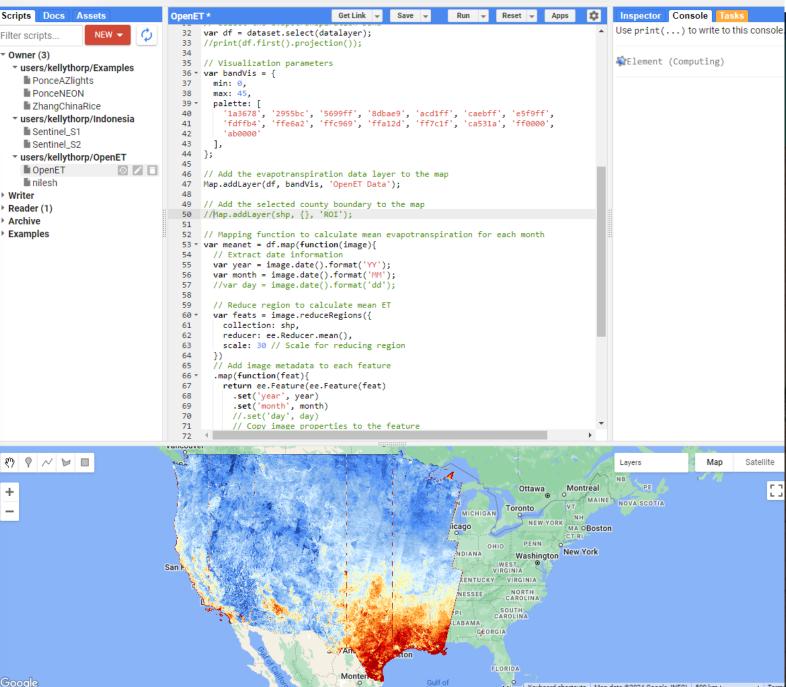
0	pen	EΤ

	Source:	https://e	tdata.org
--	---------	-----------	-----------

- Goal is "transformative, timely ET data"
 - ET-based irrigation practices
 - Water trading programs
 - Surface and groundwater accounting
- Satellite and ground-based data sources
 - Landsat, Sentinel-2, GOES, etc.
 - Weather station network data
 - Field boundary and crop type datasets
 - Gridded data corrected for bias using 800 weather stations in ag area
- Six surface energy balance models
 - ALEXI/DisALEXI (M. Anderson, ARS)
 - eeMetric (Rick Allen)
 - geeSEBAL (W. Bastiaansen)
 - PT-JPL (NASA JPL)
 - SIMS (F. Melton, NASA)
 - SSEBop (G. Senay, USGS)
- Ensemble: Mean of all 6 models after outlier removal

Model Acronym	Model Name	Primary References
ALEXI/DisALEXI v 0.0.32	Atmosphere-Land Exchange Inverse / Disaggregation of the Atmosphere-Land Exchange Inverse	Anderson et al., 2007; Anderson et al., 2018;
eeMETRIC v 0.20.26	Google Earth Engine implementation of the Mapping Evapotranspiration at high Resolution with Internalized Calibration model	Allen et al., 2007; Kilic et al., 2011; Allen et al., 2011
geeSEBAL v 0.2.2	Google Earth Engine implementation of the Surface Energy Balance Algorithm for Land	Bastiaanssen et al., 1998; Laipelt et al., 2021
PT-JPL v 0.2.1	Priestley-Taylor Jet Propulsion Laboratory	Fisher et al., 2008
SIMS v 0.1.0	Satellite Irrigation Management Support	Melton et al., 2012; Pereira et al., 2020
SSEBop v 0.2.6	Op erational S implified S urface E nergy B alance	Senay et al., 2013; Senay et al., 2018

USDA Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

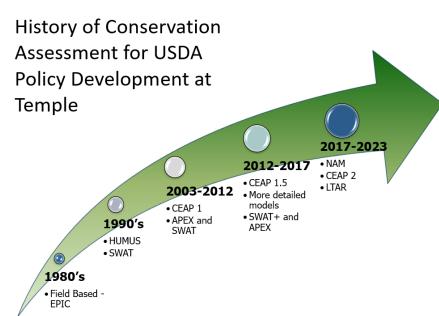

OpenET Data

- Data Explorer
 - 30 m resolution ET data
 - **Field-scale**
 - Arizona example
- Google Earth Engine
 - Python code editor
 - Automate data retrieval
 - Load shapefiles with features of interest as "assets" in GEE
 - Write script to retrieve ET data to Google Drive

Google Earth Engine

Q Search places and datasets




National Agroecosystems Model (NAM)

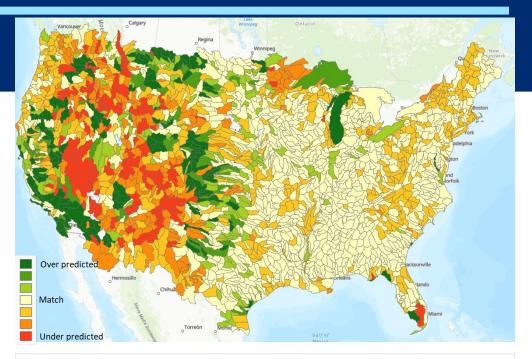

- SWAT+ modeling framework for CONUS
 - Assessment of conservation practices (CEAP)
 - Environmental impact from agriculture
 - Evaluation of land use change
 - Management of water resources
 - Studying impacts of climate uncertainty
- Incorporates field-scale and stream processes
- Based on USGS Hydrologic Unit Code (HUC) system
 - Individual SWAT+ models for each HUC8 (2121 basins)
 - Subbasins at HUC12 scale (65,000 basins)
 - Individual fields incorporated as hydrologic response units (HRU)

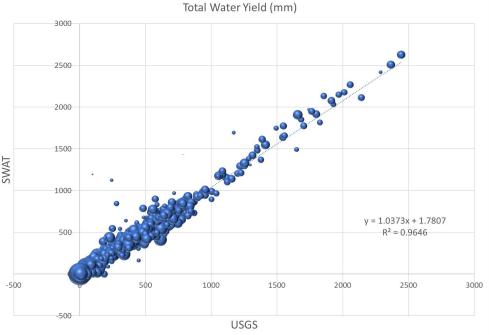
National Agroecosystems Model (NAM)

- National field boundary maps
 - Yan and Roy (2016) Landsat approach
 - Provides unique IDs (FUID) and field geometries
 - 4.5 million fields in CONUS
 - Simulation of upland processes begin at field scale

HUC12: 070802040401

FUID: 1277645001


HRU ID = 1484863 FUID = 1277645001 1% Slope Soil = Dinsdale **Corn-Soybean rotation** Tiled Not Irrigated

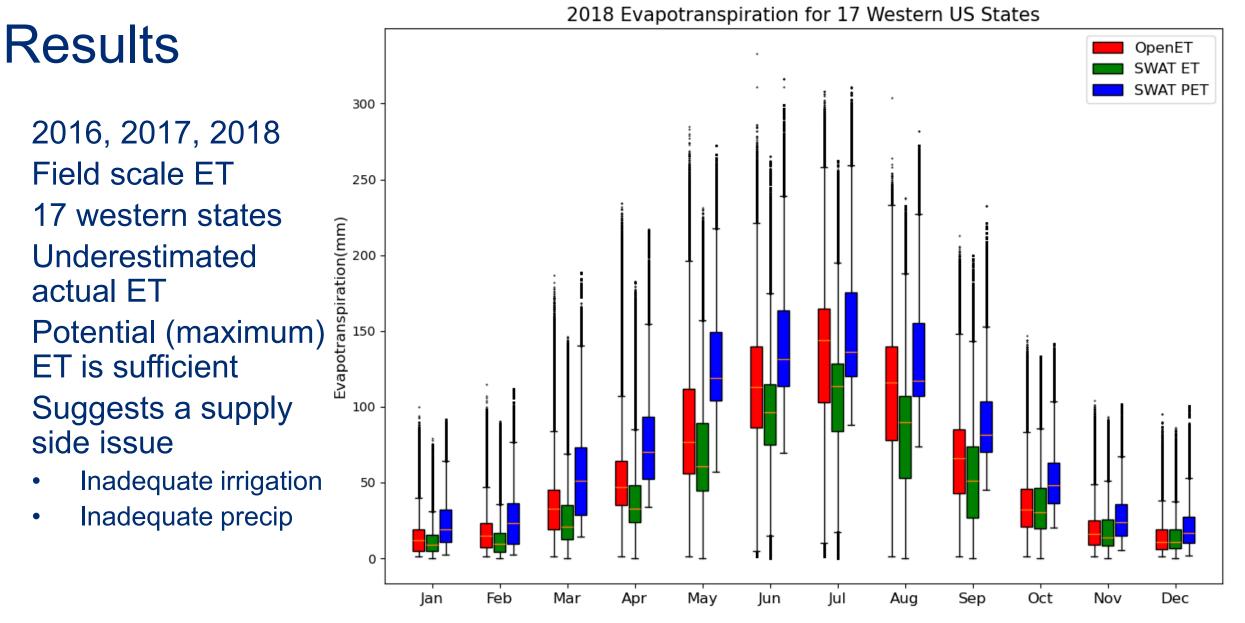


NAM Runs and Calibration

- Running the model
 - ~8 wall-clock hours on HPC
 - Break runs into 2121 HUC8 basins
 - Some basins run asynchronously
 - Others require synchronous execution
 - No routing required for upland processes
- Ongoing, long-term calibration effort
 - Water yield and stream flow
 - Nutrient and sediment loads
 - Corn and soybean yield
 - ET with limited USGS data (Rietz et al 2017)
 - Poor water yield in western CONUS
 - OpenET data can help improve model

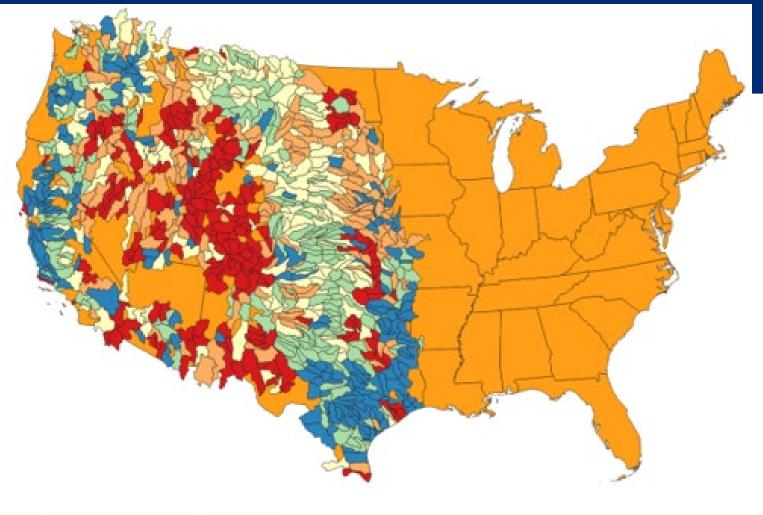
SWAT+ Evapotranspiration

- 3 potential (i.e., maximum) ET methods
 - **Priestley-Taylor**
 - Penman-Montieth (resistance terms for 40 cm alfalfa)
 - Hargreaves and Samani (1985)
 - $ET_{max} = 0.0023 \text{ x ra x} (T_{avg} + 17.8) \text{ x SQRT}(T_{max}-T_{min})$
 - NAM simulations use this equation.
- NAM weather inputs
 - Eastern US
 - Weather station data at HUC12 scale
 - Interpolation for HUC12's with no station
 - Western US
 - Limited weather stations
 - Nexrad data for precipitation
 - Prism data for temperature
 - At centroid of HUC12



Methodology

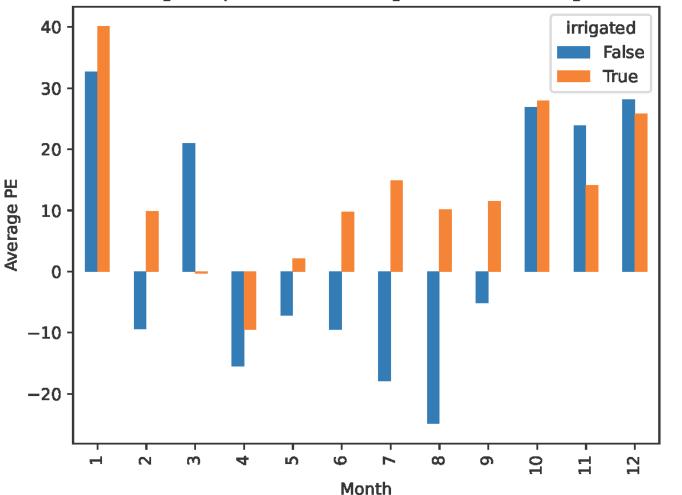
- Use NAM field boundary shapefiles
 - Yan and Roy (2016) Landsat method
 - Partition data by 17 western US states
 - Compute centroid of each field
 - Load shapefiles to Google Earth Engine
 - Obtain monthly ensemble ET data from OpenET
- Use latest calibrated NAM model
 - Pull monthly water balance output
 - Extract potential (maximum) simulated ET
 - Extract actual simulated ET
- Focus on years 2016 through 2018



USDA Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

Spatial Error

- Median percent error for ET at HUC8 and HUC12 scale
- **Red: Underestimated ET**
- Green: Reasonable ET
- Blue: Overestimated ET
- There are spatial patterns.
- Can use to improve model.



Symbol 1	7 Values	Legend
V	-84.0431.83	-8432
✓	-31.8321.89	-3222
✓	-21.899.70	-2210
✓	-9.70 - 2.90	-10 - 3
<	2.90 - 107.74	3 - 108

Rainfed vs Irrigated

- Percent error for monthly ET
 - Orange: Irrigated
 - Blue: Rainfed
 - 2016, 2017, 2018
- Irrigated: Overestimated ET
- Rainfed: Underestimated ET
- Can look at improvements to rainfall data and irrigation decision criteria.

Average PE per Month for Irrigated and Non-Irrigated

Future Work

- Lots of opportunity for building on
 - QA/QC of weather data
 - Assess deviation from reference conditions using FAO56 guidelines
 - Consider alternative weather data sources
 - Incorporation of ASCE standardized reference ET algorithm into SWAT+
 - Include adjustment from reference ET to maximum ET based on simulated LAI •
 - Obtain standardized reference ET estimates from OpenET for comparison
 - Retrieve OpenET data at difference scales
 - Within field boundaries versus at field centroids
 - Within HUC12 boundaries versus at HUC12 centroids
 - OpenET data HUC12 scale allows assessment for non-ag area ٠
 - Patiently wait for OpenET to expand to eastern CONUS
 - Improve parameterization for irrigation in the western US
- Post-doc opportunities on SWAT+ and NAM at Temple
 - Implementation of SWAT+ NAM on SCINet HPC infrastructure (ARS computing cluster)
 - Evaluating upland management practices on crop production vs environmental impact

Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

Thank you for your attention!

Kelly R. Thorp kelly.thorp@usda.gov