Assessing surface-groundwater interactions using a coupled geohydrological model for environmental flow estimation

International Soil and Water Assessment Tool (SWAT) Conference 8-12 July 2024

National School of Water and Environmental Engineering, Strasbourg University, France.

Gerardo Castellanos-Osorio, Salam A. Abbas, Eugenio Molina-Navarro, Ryan T. Bailey and Javier Senent-Aparicio.

PhD student in Computer Technology and Environmental Engineering. Catholic University of Murcia (Spain).

UNIVERSIDAD CATÓLICA

OUTLINE

> INTRODUCTION

- o General context
- Previous Work/Experience
- o Objectives

METHODOLOGY

- Watershed description
- SWAT+*gwflow* coupled model
 - Data collection and Model Set-up
 - Sensitivity analysis and Calibration method (PEST++)
- Environmental flow estimation (Hydrological methods)
- > RESULTS

INTRODUCTION

- Hydrological models are essential for understanding watershed dynamics and the impact of human activities on water resources.
- In highly anthropized countries, such as Spain, the availability of daily scale data in natural regime becomes a complicated task, so that most of the times it is necessary to apply these models.
- Daily time-scale models can be complex and deficient in specific contexts (e.g. drier climates) and require higher computational performance. Consequently, there may be a need to study other

alternatives.

Previous work

- We found that a calibration of the SWAT+ model directly at the daily scale gave us an underestimation of the flows, and consequently, of the environmental flows.
- In contrast, we found that monthly calibration to adjust the monthly volumes of the SWAT+ model followed by a disaggregation based on a daily flow pattern showed better

Journal of Hydrology Volume 623, August 2023, 129837

UCAM

Research papers

Disaggregated monthly SWAT+ model versus daily SWAT+ model for estimating environmental flows in Peninsular Spain

https://doi.org/10.1016/j.jhydrol.2023.129837 ⁊	Get rights and content 🛪
+ Add to Mendeley 😪 Share 🍠 Cite	
Show more 🗸	
Javier Senent-Aparicio a 🔉 🖂	
<u>Gerardo Castellanos-Osorio</u> a 🔯 , <u>Adrián López-Ballesteros</u>	

Highlights

- SWAT+ model and WRAP were coupled to obtain daily streamflow data.
- · Disaggregation technique based on flow pattern is recommended.
- · Disaggregation of a monthly calibrated model estimates reliable environmental flows.
- · SWAT+ model calibrated on a daily scale underestimates environmental flow.
- · An alternative for environmental flows estimation in anthropized watersheds is shown.

- Coupling of the SWAT+ model with the new gwflow module in order to improve the representation of the watershed and the simulated flow rates.
- ✓ Analyse the sensitivity of the parameters, calibrate and validate, at monthly and daily scale, all the scenarios giving more weight/importance to low flows using PEST++ (Sen and iES).
- Evaluation of model performance, application of disaggregation techniques in monthly scenarios, and estimation of environmental flows

RESULTS

CONCLUSIONS

with the generated daily series.

METHODOLOGY

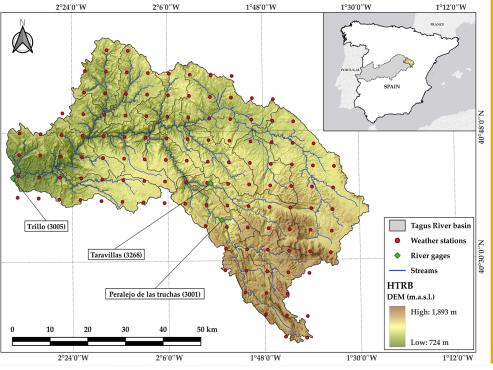
INTRODUCTION

Scenario 1 SWAT+ Daily Calibration

LIC A M

Scenario 2 SWAT+ Monthly Calibration Daily disaggregation

> **Scenario 3** SWAT+*gwflow* Daily Calibration

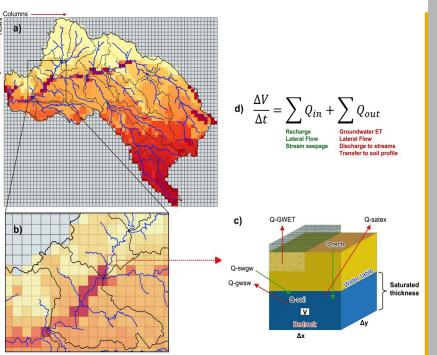

> > i.

METHODOLOGY

Watershed description

This area holds significant strategic importance for water resources as it supplies the **Tagus-Segura Water Transfer**. The allocation of water to the Mediterranean region involves national-level political decisions and has been a source of territorial disputes, particularly during drought periods (*Garrote et al., 2007*).

Upper Tagus river basin				
Area	3,252 km ²			
Precipitation	627 mm/year			
PET	1,174 mm/year			
Mean discharge	11.49 m ³ /s			
INTRODUCTION	METHODOLOGY	RESULTS		

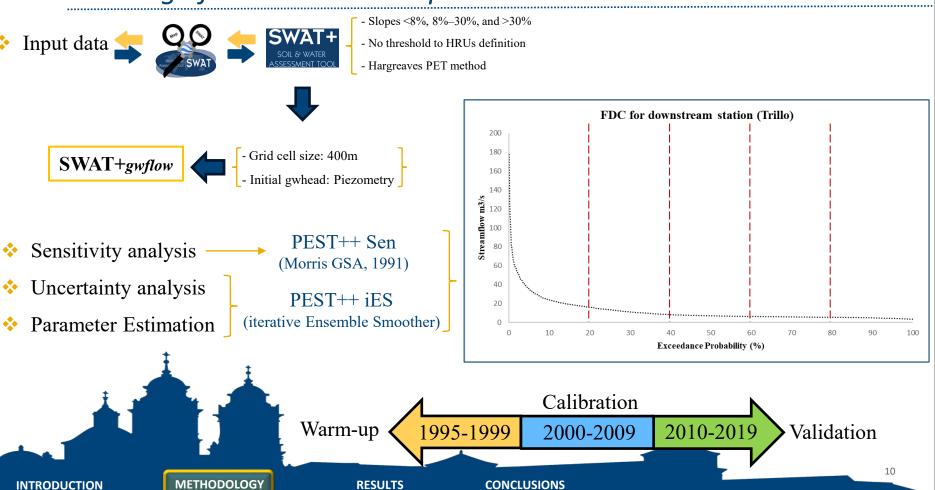

CONCLUSIONS

8

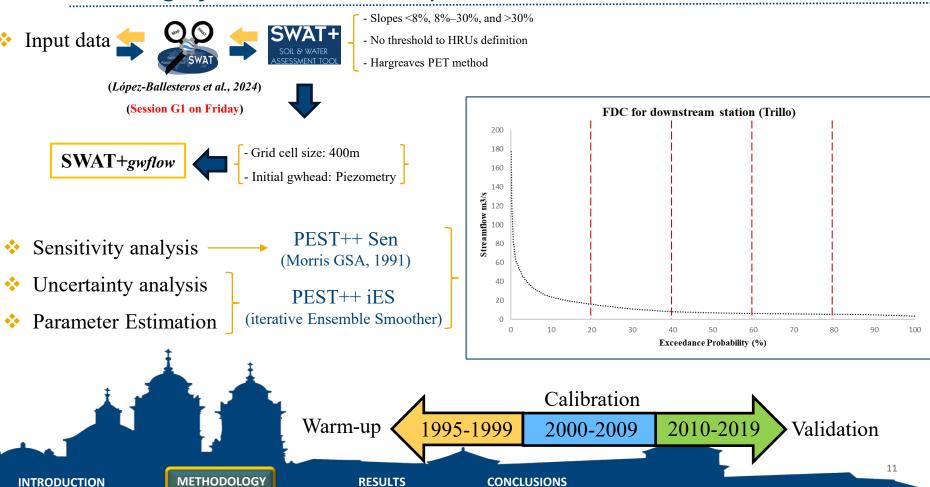
SWAT+gwflow. Data collection

Input	Spatial Resolution	Source		
Weather data	5 km x 5 km	Spanish National Meteorological Agency (AEMET)		
DEM 25 m x 25 m		National Geographic Institute of Spain (IGN)		
Land uses 100 m x 100 m		CORINE Land Cover 2018 (CLC)		
Soil	250 m x 250 m	Digital Soil Open Land Map (DSOLMap)		
Aquifer thickness	250 m x 250 m	ISRIC World Soil Information		
Aquifer permeability	Vector polygon	GLobal HYdrogeology MaPS (GLHYMPS)		

Observed streamflow data on monthly and daily scale were extracted from CEDEX gauging stations no. 3005, 3001 and 3268 located at Upper Tagus Basin for 2000 – 2019 period.

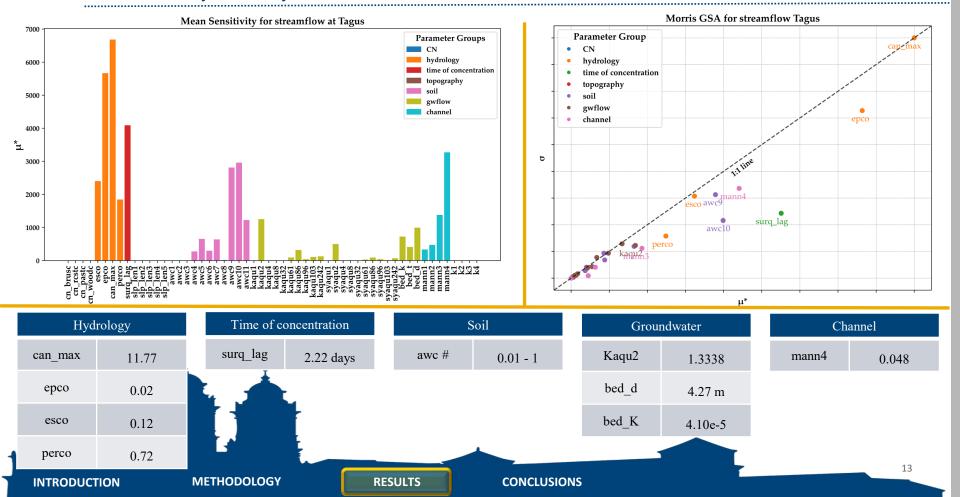

Geographical layout and computation method of SWAT+gwflow (Bailey et al., 2020)

INTRODUCTION


.....

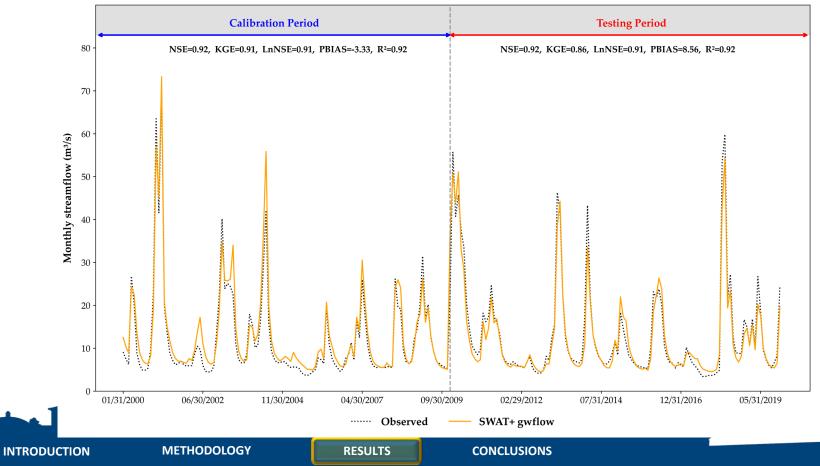
9

SWAT+gwflow. Model Set-up

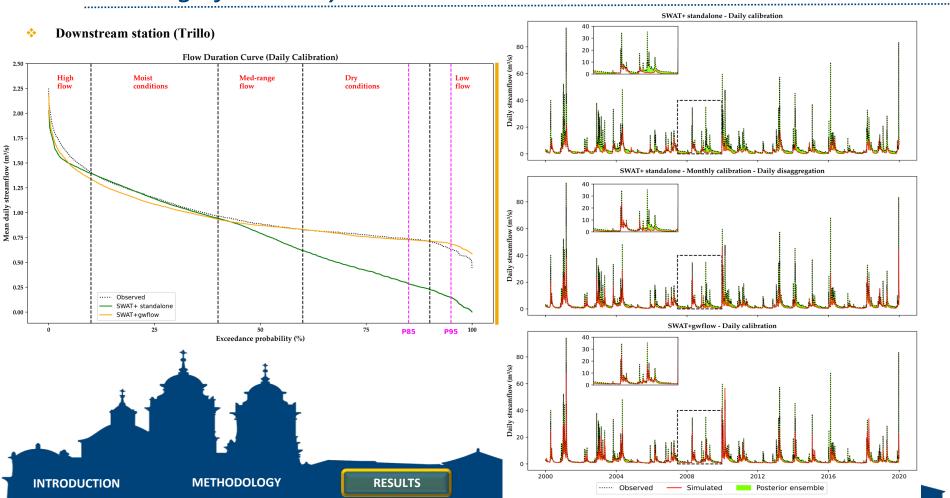


UCAM

RESULTS


Sensitivity Analysis and Parameter Estimation

UCAM


SWAT+gwflow monthly calibration

Downstream station (Trillo) - 💠

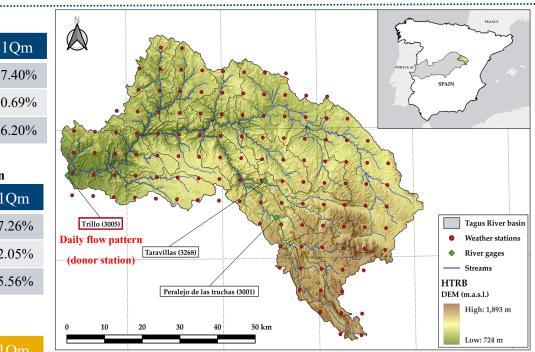
14

SWAT+gwflow daily calibration

Environmental Flow Estimation

UCAM

SWAT+ standalone – Daily Calibration							
Station	Qb	Q95	Q85	25Qm	21Qm		
3005	-60.53%	-69.74%	-65.28%	-67.38%	-67.40%		
3001	-77.23%	-84.05%	-81.45%	-80.74%	-80.69%		
3268	-69.76%	-62.50%	-61.65%	-66.08%	-66.20%		


SWAT+ standalone – Monthly Calibration – Daily disaggregation

Station	Qb	Q95	Q85	25Qm	21Qm
3005	-50.22%	-62.92%	-63.88%	-58.07%	-57.26%
3001	-55.80%	-68.89%	-64.56%	-61.86%	-62.05%
3268	-33.22%	-43.54%	-33.01%	-24.27%	-25.56%

SWAT+ *gwflow* – Daily Calibration

٠.

-			METHODO	Ĩ.		SULTS
	3001 3268	-12.04%	-9.23% +14.9%	-7.05% +2.15%	-19.74% +2.45%	-8.83% +2.82%
	3005	-8.04%	-13.07%	-20.12%	-14.11%	-13.86%
	Station	Qb	Q95	Q85	25Qm	21Qm

- We used the disaggregation technique #4 (*replication of a daily flow pattern*) included in the WRAP modeling system (*Wurbs, 2021*).
- The base flow method (Qb) (*Palau and Alcázar, 2012*), based on 100-days moving average, is the most widely used in the hydrological planning in Spain.

- ✓ Using soil maps with finer *spatial resolution* and more detailed *soil profiles*, such as DSOLMap, in hydrological modelling lead to a better representation of daily hydrological responses.
- After *calibration*, only the DSOLMap reached satisfactory daily streamflow predictions with a *minimal variation range* of the SWAT+ parameters.
- ✓ For the Anduña watershed, the *hydrological process estimations* were aligned between the DSOLMap and the HWSD but not with those of DSWM.

THANKS FOR YOUR ATTENTION