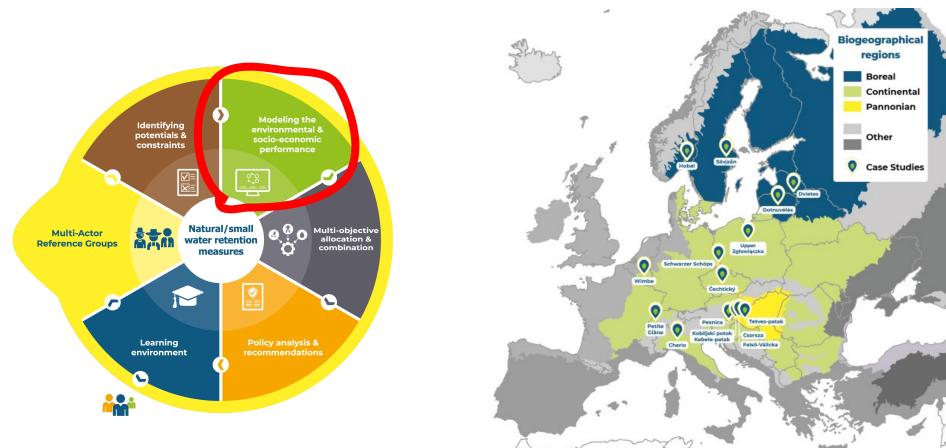
SWAT+ model setup verification tool: **SWATdoctR**



Svajunas Plunge^{a,b}, Christoph Schürz^c, Natalja Čerkasova^{d,e}, Michael Strauch^c, Mikolaj Piniewski^a

^aWarsaw University of Life Sciences
 ^bVytautas Magnus University
 ^cHelmholtz Centre for Environmental Research GmbH– UFZ
 ^dMarine Research Institute, Klaipėda University
 ^eTexas A&M AgriLife Research

Workflow in R

Dr. Gu**R**u

SWATbuildR

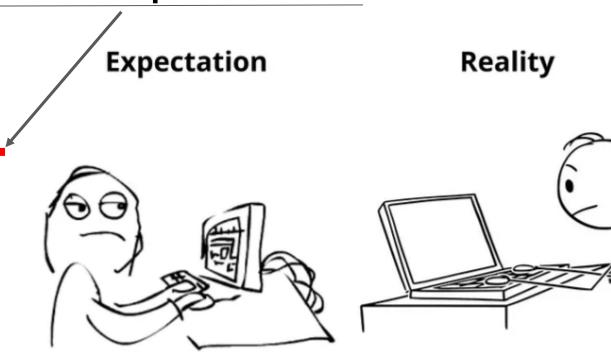
An object connectivity based SWAT+ model builder

SWATdoctR Model diagnostics tool for SWAT+ model setups

Vision: SWAT+ modelling process fully scriptable in R

SWATprepR SWAT+ input data preparation

SWATfarmR

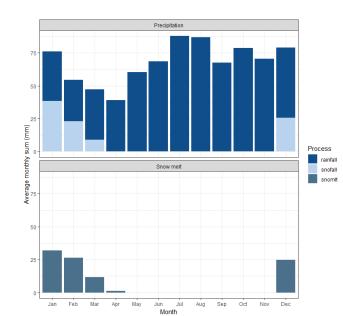

Simple rule based management operation scheduling

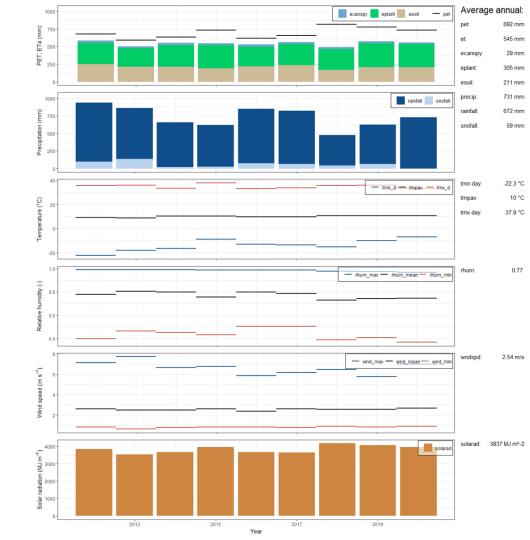
SWATplusR

SWATrunR Running SWAT simulations in R

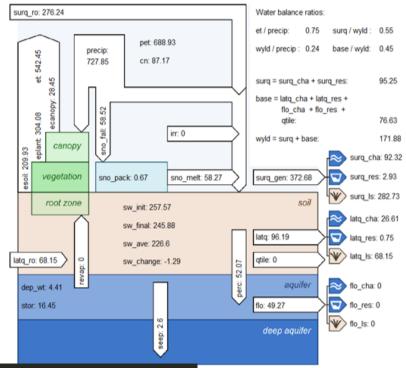
New concept - model setup verification

- Input data preparation
- Setup preparation
- Sensitivity assessment
- Calibration
- Validation
- Scenarios
- Reporting


I have no idea what I'm doing


l am a God

Proposed workflow for SWAT+ model setup verification, 5 steps



Step 1. Analysis of simulated climate variables and water balance component

Step 1. Analysis of simulated climate variables and water balance component

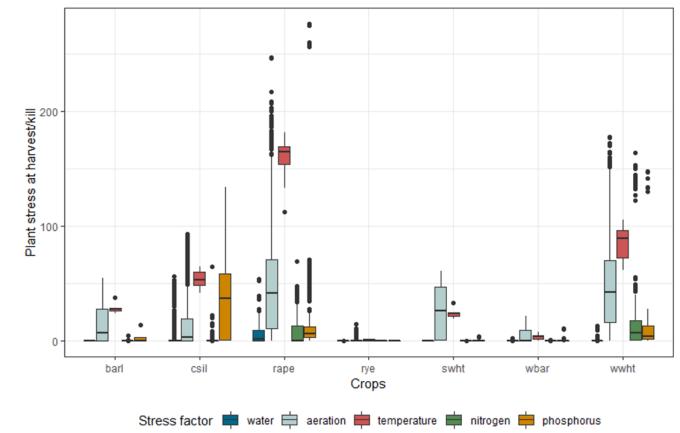
# A tibble: 1,426 × 10									
	id lu_mgt	precip_check	et_check	eplant_check	surq_wyld_check	perc_wyld_check	surq_check	sw_check	cn_check
	<int> <chr></chr></int>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>
1	2 field_392_1_lum			eplant < esoil		perc/wyld < 22%			NA
2	4 rngb_lum				<pre>surq/wyld < 31%</pre>	perc/wyld < 22%			NA
	5 rngb_lum				<pre>surq/wyld > 78%</pre>	perc/wyld < 22%	surq > 150% exp. surq		cn > 95
4	6 field_394_lum			eplant < esoil	surq/wyld > 78%	perc/wyld < 22%	surg > 150% exp. surg		cn > 95
	7 field_396_lum			eplant < esoil	surq/wyld > 78%	perc/wyld < 22%	surg > 150% exp. surg		cn > 95
6	8 field_167_1_lum				surq/wyld > 78%				NA
7	9 field_167_2_lum				<pre>surq/wyld > 78%</pre>	perc/wyld < 22%	surg > 150% exp. surg		NA
8	10 frst_lum					perc/wyld < 22%			NA
9	11 frst_lum					perc/wyld < 22%			NA
10	12 frst_lum					perc/wyld < 22%			NA
	with 1,416 more rows								
	Use `print(n =)`	to see more r	ows						

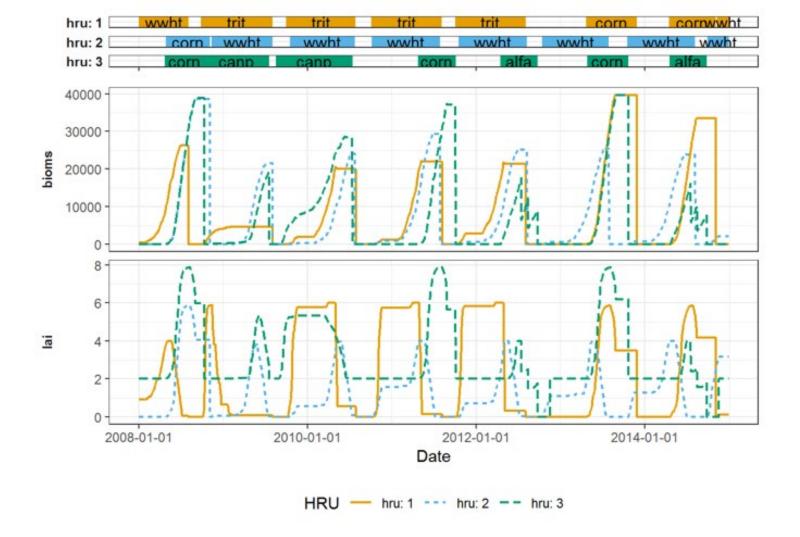
Step 2. Simulation of management operations

- Identification of issues with management operations
- Comparison between model input and output (*management.sch* and *mgt_out.txt*)

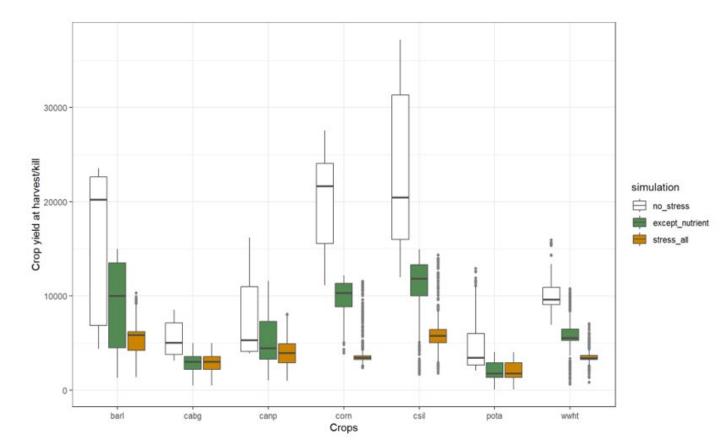
```
mgt_report <- report_mgt(sim_nostress)</pre>
```

mgt_report


#>	# A	tibble:	3 ×	3					
#>	s	chedule	0	p_issu	е	schedule	<u>_</u> T	epo	ort
#>	<	chr>		<int< td=""><td>></td><td><list></list></td><td></td><td></td><td></td></int<>	>	<list></list>			
#>	1 a	grr_rape			1	<tibble< td=""><td>[1</td><td>×</td><td>8]></td></tibble<>	[1	×	8]>
#>	2 a	grr_wbar			1	< tibble	[1	×	8]>
#>	3 а	grr_wwht			1	<tibble< td=""><td>[1</td><td>×</td><td>8]></td></tibble<>	[1	×	8]>


mgt_report\$schedule_report[3]

```
#> [[1]]
#> # A tibble: 1 × 8
#> year mon day op_typ op_data1_trig op_data1 op_data2 op_data3
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> < 1 1 8 1 harv NA rape grain 0</pre>
```


Step 3. Analysis of unconstrained plant growth

- 5 plant stress factors
- What is plant growth in ideal conditions?

Step 4. Model simulations with plant stress active

Step 5. Simulation of point inputs and tile drains

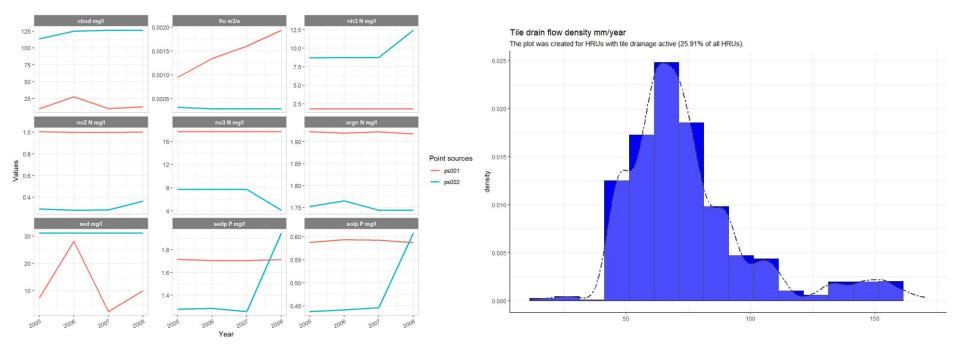



Table 1. Characteristics of SWAT+ model setups used in case comparison.

	Case I	Case II	Case III	Case IV
Catchment size (km²)	417	386	150	2926
Land use (%): -forest -pastures -arable land -urban and water	22 45 30 3	16 8 67 (39 ²) 7 (3+4)	5.5 2 89 3.5	1 4 83 (77 ³) 12 (7+5)
HRU number	1197	5391	10240	7437
Routing units	9	93	10240	68
Channels	9	93	128	522
Reservoirs	3	0	27	67
Aquifers	10	94	1	34
Point sources	6	93	2	34
Management	HU-based	HU-based	Date-based	Date-based
HRUs with tile drains (%)	83	26	59	83
Calibration status	Calibrated flows and water quality	In process	Not started	Finished soft calibration⁴

- Wrong units
- Not credible ET or PET values
- Wrong parametrization of wetlands
- Wrong PHU at harvest
- Management issues
- Bad quality of ps input data, no data provided or wrong units
- Too high tile drain flow

"I could be a healthy person if you'd stop finding things wrong with me!"

Summary

- Model setup verification procedure helps to identify and eliminate input or structural errors in early stages
- Saving time and efforts in later stages (calibration, validation, scenario runs)
- Important for building confidence, especially for stakeholders
- Easy to integrate into templates (as markdown) and provide automatized reports
- Helps to investigate issues, find problems with model

More information

Tool is accessible

_

- SWAT+ modelling protocol 10.5281/zenodo.7462415

SWAT+ modeling protocol for the assessment of water and nutrient retention measures in small agricultural catchments

SWATdoctR is a collection of furctions and routines for SWAT model calibation and model diagnostics. The R package includes routines for a guided model calibration, functions for the evaluation of the model performance, as well as functions for the visualization and diagnosis of simulation outputs. The aim of the SWATdoctR is to identify potential issues in the model setup early in the calibration process and to support the SWAT modeler to focus on a plausible process representation in the model calibration process.

First ToDos for model verification

SWATdoctR

- · Write SWAT run function to extract simulation outputs for model verification
- Sten 1 in verification: Simulation of climate variables

- Article under review in EMS

https://git.ufz.de/schuerz/swatdoctr

Contact: syajunas_plunge@sggw.edu.pl