# Satellite-based soil moisture enhances the reliability of agro-hydrological modeling in large transboundary river basins

#### Mohammad Reza Eini, Christian Massari, Mikołaj Piniewski

Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland

Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany

Research Institute for Geo-Hydrological Protection, National Research Council, Perugia, Italy





- The data issues in transboundary river basins
- A reliable model for projecting hydrological and agricultural drought indicators crop yield assessments
- Evaluating single- and multi-objective strategies in calibration

## **Study Area**

• The Odra River Basin (ORB) – 120,000 sq-km

- Located in Central Europe
- The fifth largest river basin in EU
- 89 % is in Poland
- 4.9 % in Germany
- 6.1 % in the Czech Republic
- The longest stream is 840 km
- The annual river discharge is ~ 470 cms
- Average annual precipitation ~ 650 mm



## **Study Area**



## **SWAT+ model configuration**

- 1476 subbasins (pre-defined watersheds)
- 20,000 hydrologic response units (HRUs)
- 176 lakes (natural lakes and reservoirs)
- 11 major crops
- Management plans (fertilizer, planting date, harvesting,...)
- Drainage system
- Weather datasets (G2DC-PL+ and ERA5 (solar radiation))
- Penman-Monteith method for PET
- Period: 1997-2019

An extensively revised version of SWAT+: <u>https://github.com/andrejstmh/SWATplus</u> Microsoft Visual Studio and Intel Fortran Compiler



## **Satellite-based Soil Moisture**

- ESA (European Space Agency) CCI (Climate Change Initiative) SM version 07.1
- Combined product
- The resolution of this product is 0.25° and has daily time step
- The Soil Water Index (SWI) was used for corrections of SM
- Due to the large-scale resolution and irregular time intervals on surface and depth



**Leesa** 

SWI: Massari et al (2014) <u>https://doi.org/10.5194/hess-18-839-2014</u> Ceballos et al (2005) <u>https://doi.org/10.1002/hyp.5585</u>

Source: esa-soilmoisture-cci.org

## **Objective functions and calibration strategies**

- Kling–Gupta efficiency (KGE) for river discharge
- SPAtial EFficiency (SPAEF) for Soil Moisture (compares two maps)
- The single-objective (SO) calibration of river discharge
- The multi-objective (MO) calibration of river discharge and soil moisture

• Effect of SO and MO on river discharge, soil moisture and crop yields

## Results

## **Calibrated parameters**

26 discharge stations were classified into 6 groups based on land use and soil of the drainage area Selected model parameters were calibrated for 6 groups

| Change         | Parameter    | Initial range of parameters |            | Final value      |                 |  |
|----------------|--------------|-----------------------------|------------|------------------|-----------------|--|
| method         |              | Lower band                  | Upper band | Single-objective | Multi-objective |  |
|                | alpha.gw     | 0.01                        | 0.1        | 0.06             | 0.04            |  |
|                | bf_max.gw    | 0.01                        | 1          | 0.29             | 0.61            |  |
| Absolute value | chn.rte      | 0.05                        | 0.2        | 0.18             | 0.08            |  |
|                | deep_seep.gw | 0.001                       | 0.2        | 0.05             | 0.14            |  |
|                | epco.hru     | 0                           | 0.3        | 0.07             | 0.05            |  |
|                | esco.hru     | 0.5                         | 1          | 0.94             | 0.95            |  |
|                | flo_min.gw   | 1                           | 5          | 3.31             | 3.27            |  |
|                | lat_time.hru | 0.5                         | 2          | 1.04             | 0.93            |  |
|                | perco.hru    | 0.85                        | 0.99       | 0.96             | 0.96            |  |
|                | revap_co.gw  | 0.02                        | 0.1        | 0.023            | 0.04            |  |
|                | revap_min.gw | 4                           | 10         | 7.05             | 5.76            |  |
|                | sp yld.gw    | 0                           | 0.2        | 0.09             | 0.04            |  |
| lative value   | awc.sol      | -0.2                        | 0.2        | -0.155           | 0.14            |  |
|                | bd.sol       | -0.3                        | 0.3        | 0.29             | 0.02            |  |
|                | cn2.hru      | -0.2                        | 0.2        | -0.02            | 0.11            |  |
|                | cn3_swf.hru  | -0.5                        | 0.5        | -0.29            | -0.35           |  |
| R              | k.sol        | -0.2                        | 0.2        | -0.195           | -0.02           |  |

## **Calibration results at main discharge stations**

|                                                      |                       |                  |              | KGE             |              |  |
|------------------------------------------------------|-----------------------|------------------|--------------|-----------------|--------------|--|
| River and discharge station name                     | Q (m <sup>3</sup> /s) | Single objective |              | Multi objective |              |  |
|                                                      |                       | Calibration      | Validation   | Calibration     | Validation   |  |
| Odra at Gozdowice                                    | 474.1                 | 0.77             | 0.78         | 0.81            | 0.83         |  |
| Odra at Cigacice                                     | 188.1                 | 0.86             | 0.81         | 0.75            | 0.79         |  |
| Warta at Skwierzyna                                  | 117.36                | 0.73             | 0.78         | 0.84            | 0.85         |  |
| Noteć at Nowe Drezdenko                              | 66.32                 | 0.56             | 0.63         | 0.81            | 0.88         |  |
| Odra at Racibórz-Miedonia                            | 63.28                 | 0.45             | 0.53         | 0.67            | 0.65         |  |
| Noteć at Nowe Drezdenko<br>Odra at Racibórz-Miedonia | 66.32<br>63.28        | 0.56<br>0.45     | 0.63<br>0.53 | 0.81<br>0.67    | 0.88<br>0.65 |  |



![](_page_11_Figure_1.jpeg)

![](_page_12_Figure_1.jpeg)

#### What happens if we apply SWI?

Soil moisture was calibrated for topsoil (300 mm) and entire soil profile!

In SWAT and SWAT+ models soil moisture **is not soil moisture It shows water content above wilting point** 

#### After three months in SWAT2022 conference!

![](_page_13_Figure_1.jpeg)

**SPAEF** distributions at subbasin levels: average = 0.37 topsoil and 0.31 entire soil profile

![](_page_14_Figure_1.jpeg)

#### Effect of SO and MO on crop yields

![](_page_15_Figure_2.jpeg)

## **Future works**

- The difference of SO and MO approaches in projections
- Water accounting for historical and future based on the MO approach
- Projecting hydrological and agricultural droughts and crop yields
- Assessing the possibility of supplemental irrigation for this region

#### **Financial support**

- National Science Centre (NCN- PRELUDIUM BIS-1 project)
- Warsaw University of Life Sciences (SGGW's Own Scholarship Fund for outstanding PhD Students and Employees)
- Polish National Agency for Academic Exchange (NAWA)

#### Hosts

- Geo-Hydrological Protection, National Research Council (IRPI-CNR), Perugia, Italy
- Potsdam Institute for Climate Impact Research PIK, Potsdam, Germany

POLISH NATIONAL AGENCY FOR ACADEMIC EXCHANGE

![](_page_17_Picture_8.jpeg)

### Acknowledgement

![](_page_18_Picture_0.jpeg)

#### Science of The Total Environment Volume 873, 15 May 2023, 162396

![](_page_18_Picture_2.jpeg)

Satellite-based soil moisture enhances the reliability of agro-hydrological modeling in large transboundary river basins

Mohammad Reza Eini a 🝳 🖂 , Christian Massari <sup>b</sup> 🖂 , Mikołaj Piniewski a 🖂

https://doi.org/10.1016/j.scitotenv.2023.162396

Mohammad Reza Eini Warsaw University of Life Sciences

mohammad\_eini@sggw.edu.pl

## Thanks for your attention

![](_page_18_Picture_9.jpeg)