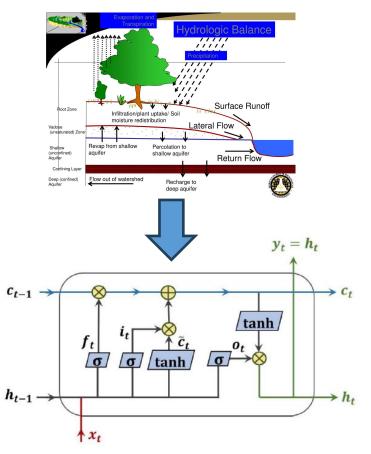


Coupling SWAT+ with LSTM for improved streamflow estimation in the Tagus Headwaters River Basin, Spain

Sara Asadi, Patricia Jimeno-Saez, Adrián López-Ballesteros, Javier Senent-Aparicio

Department of Civil Engineering, Catholic University of San Antonio, Campus de Los Jeronimos s/n, 30107 Guadalupe, Murcia, Spain <u>s.asadi370@gmail.com</u>; <u>sasadi@alu.ucam.edu</u>

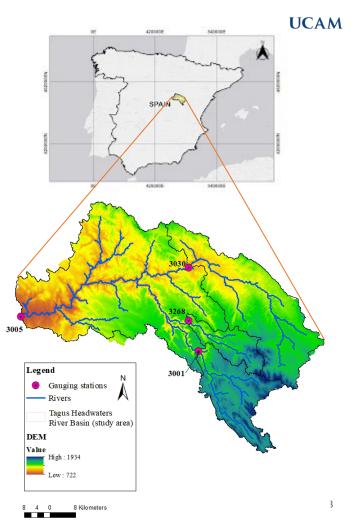
UCAM


Objective

Improving streamflow simulation accuracy

Using both conceptual hydrological models and machine learning based data driven models

SWAT: one of the process based models extensively used in the management of water resources

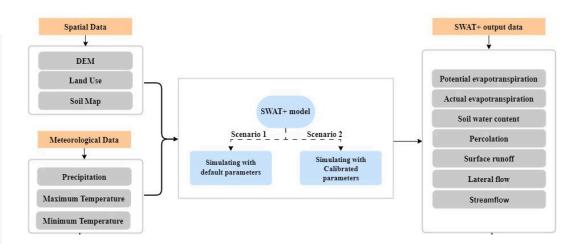

LSTM AI-based model: there are studies show that LSTM model has outperformed SWAT model in simulating runoff

Case study

Tagus Headwaters River Basin (THRB), Spain
One of the most regulated rivers in Europe
Tagus-Segura water transfer: Beyond meeting local water demands, it also diverts a portion of its supply to the Segura River Basin
Total area of the study area: 3200 km2

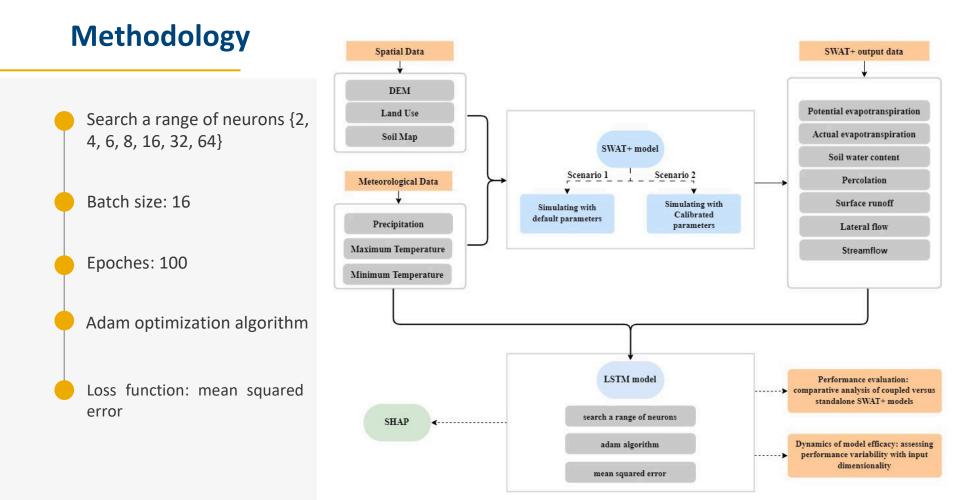
Four gauging stations recording daily flow data were utilized to determine the outlet locations for four catchments

Methodology


Four different SWAT+ models for every station upstream

Warm-up period: 1985-1989

Calibration period: 1990-2005


Validation period: 2006-2020

Automatic sensitivity analysis and calibration: SWATplusCUP

Number	Parameter	Range	Gauging stations				Rank
	A THE REALFY- Y-A	a compe	3001	3005	3030	3268	a search
	Hydrologic parameters						
1	Initial SCS curve number II (CN2)	$\pm 30\%$	-21.85%	-25.14%	-26.69%	-23.13%	1
2	Percolation coefficient (perco)	0-1	0.98	0.88	0.19	0.91	3
3	Slope length for lateral subsurface flow (lat len)	1 - 150	92.77	109.37	62.81	73.97	5
4	Soil evaporation factor (esco)	0-1	0.49	0.55	0.83	0.36	7
5	Plant uptake factor (epco)	0-1	0.77	0.08	0.30	0.73	8
6	Manning coefficient of the main channel (chn)	0.01 - 0.3	0.29	0.10	0.11	0.20	11
7	Manning "n" value for surface flux (ovn)	0.01 - 30	2.46	10.21	10.02	26.31	12
	Soil parameters						
8	Bulk soil density (BD)	$\pm 30\%$	-17.47%	-3.31%	-11.71%	-4.32%	2
9	Available water capacity of the soil layer (awc)	$\pm 30\%$	-17.80%	9.48%	-12.64%	6.55%	14
	Groundwater parameters						
10	Specific yield (sp_yld)	0-0.5	0.33	0.25	0.05	0.04	4
11	Groundwater storage threshold for return flow to occur (flo_min)	0-10	6.21	9.98	4.99	6.73	6
12	Groundwater "revap" coefficient (revap co)	0.02 - 0.2	0.11	0.19	0.11	0.20	9
13	Alpha factor for the aquifer recession curve (alpha)	0-1	0.72	0.70	0.81	0.85	10
14	Threshold of water depth in the shallow aquifer required to allow revap (revap_min)	0-10	5.80	5.55	2.26	2.86	13

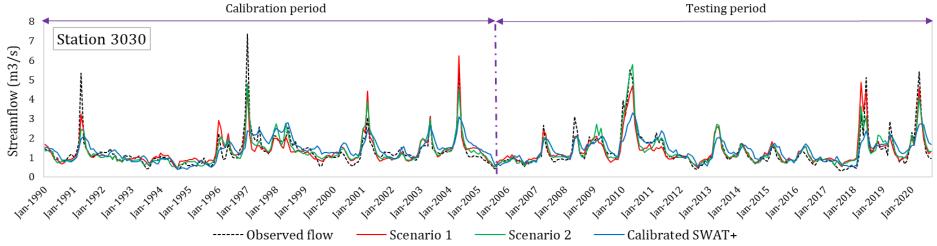
UCAM

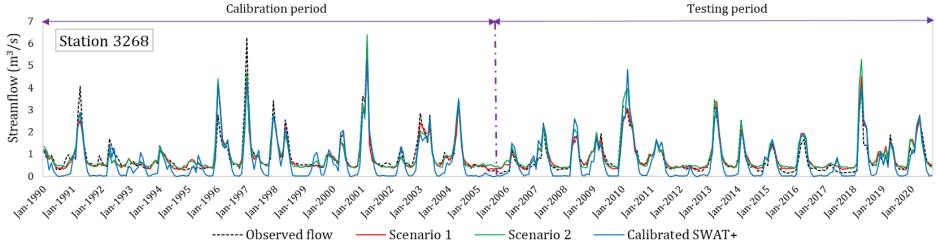
Methodology

Performance evaluation: NSE, RMSE, MAE, PBIAS

Shapley Additive Explanation (SHAP) methodology: how each input feature contributes to the prediction

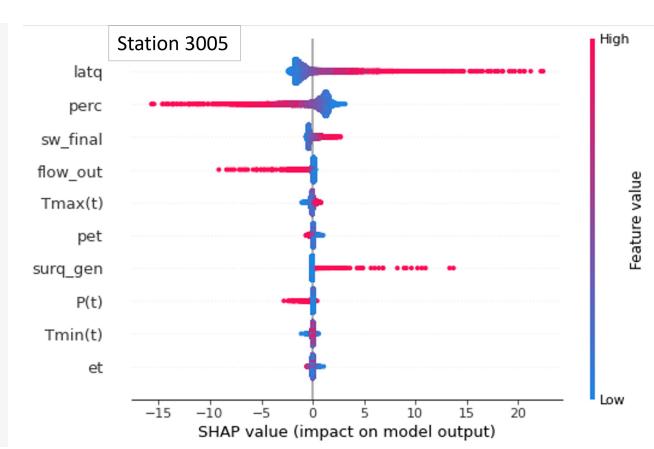
SHAP: Addressing the criticism regarding the black box nature of AI-based models


SHAP value plots and global feature importance plots


Performance evaluation	Station 3001	Statistics	SWAT+ daily	Scenario 1	Scenario 2	
r chomance evaluation	Calibration	NSE	0.44	0.68 ± 0.02	0.76 ± 0.04	
Station 3001		PBIAS (%)	49.24	1.31 ± 4.93	0.21 ± 3.93	
	Validation	NSE	0.30	0.75	0.68	
	vanuation	PBIAS (%)	51.72	-2.07	-4.77	
Calibration period Testing period						
Streamlow (marked state) 25 20 15 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
Observed f	low —— Scenario	o 1 —— Scenar	io 2 —— Calibrate	d SWAT+		

Performance evaluation	Station 3005	Statistics	SWAT+ daily	Scenario 1	Scenario 2			
renormance evaluation	Calibration	NSE	0.49	0.86 ± 0.02	$0.82\pm\!0.02$			
Station 3005		PBIAS (%)	35.08	-0.67 ± 2.14	1.24 ± 1.24			
	Validation	NSE	0.51	0.81	0.79			
		PBIAS (%)	31.97	5.86	-4.93			
	Calibration period Testing period							
Station 3005 Station 3005 St								
Observed flow Scenario 1 Scenario 2 Calibrated SWAT+								

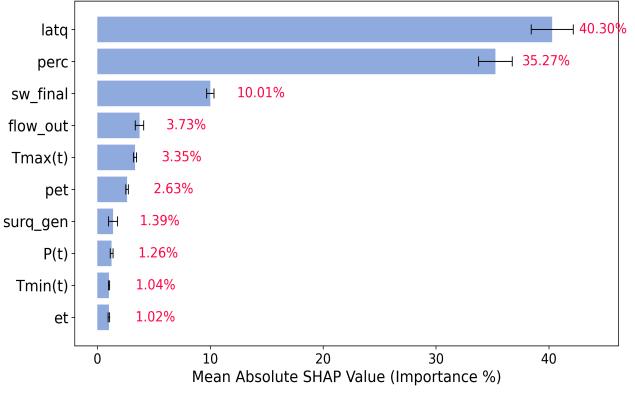
Performance evaluation	Station 3030	Statistics	SWAT+ daily	Scenario 1	Scenario 2
	Calibration	NSE	0.21	0.71 ± 0.01	$0.62\pm\!0.03$
Station 3030		PBIAS (%)	-6.91	0.42 ± 1.59	-0.23 ± 0.83
	Validation	NSE	0.28	0.62	0.55
		PBIAS (%)	-3.12	9.66	6.88
Calibration perio		Testing period			



Performance evaluation	Station 3268	Statistics	SWAT+ daily	Scenario 1	Scenario 2
	Calibration	NSE	0.49	$0.75\pm\!\!0.02$	0.79 ± 0.02
Station 3268	Calibration	PBIAS (%)	29.19	-1.30 ± 3.54	-1.73 ±2.37
	Validation	NSE	0.39	0.71	0.78
		PBIAS (%)	17.44	19.57	21.36

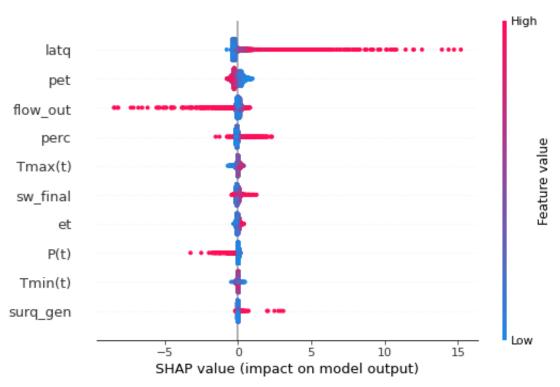
SHAP interpretation results for scenario 1

The plot shows SHAP value: how every input feature impacts on model output


UCAM

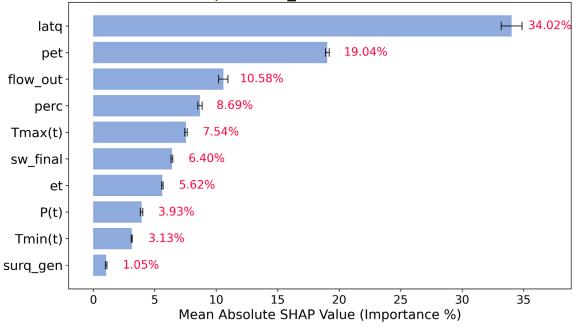
Results

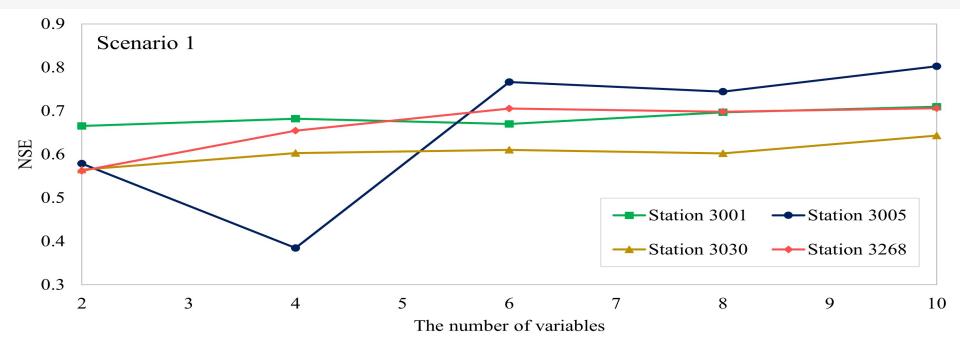
SHAP interpretation results for scenario 1


Global feature importance: mean absolute SHAP value (importance %) for every input feature

Global Feature Importance_station 3005

SHAP interpretation results for scenario 2


The plot shows SHAP value: how every input feature impacts on model output


SHAP interpretation results for scenario 2

Global feature importance: mean absolute SHAP value (importance %) for every input feature

Global Feature Importance station 3005

SWAT+ and LSTM coupled model performance as the number of input variables changes

Conclusion

Coupling SWAT+ and LSTM models improves streamflow prediction

Employing calibrated SWAT+ model outputs as inputs for AI-based models does not significantly affect streamflow predictions when compared to using outputs from the SWAT+ model with default parameter

SHAP methodology helps for machine learning based models interpretation

Different features including meteorological data and SWAT+ output features play differently in creating outputs of coupled models

Coupled models performance increases as we use more input features for LSTM models

Thanks for your attention

sasadi@alu.ucam.edu