

Setting up a SWAT+ model to study low flow conditions and measures to increase drought resilience

Sven Grantz, Paul Wagner, Jens Kiesel, Nicola Fohrer

: Verbundvorhaben wird vom idesministerium für Bildung und Forschung HBF) innerhalb der Fördermßnahme Wasserremereignisse (WaX) gefördert

Department of Hydrology and Water Resources Management

GEFÖRDERT VOM

Bundesministerium für Bildung

und Forschung

Impacts of drought in the catchment

Endangered water supply

Low water table at Talsperre Hullern, 2019

Reduced agricultural yields

Degradation of ecosystem services

Dried up river Rotbach in Dinslaken, 2022

Developing and Modelling of Climate Resilience Measures

A rural catchment, dominated by agriculture

Water used for shipping canal network

- Ø 37 % of discharge transferred at Hamm into the Datteln-Hamm Canal
- Ø 32 % of the Lippe discharge supplemented from the canal network to ensure minimum discharge of 10 m³/s
- Modelled annual average change at the catchment outlet: + 5 m³/s
- Water transfer needs to be considered for calibration

Model setup with publicly available input data

Low model performance of initial setup

- Calibrated for two gauges (upper and full catchment)
- Applied R-packages: Latin Hypercube Sampling (lhs) and goodness-of-fit evaluation (hydroGOF)
- Discharge is strongly underestimated at both gauges
- Problems with low flow representation

Baseflows are insufficiently represented in the model

- Baseflow separation according to Lynne-Hollick (1979) with R-Package "grwat":
 - 72% baseflow at the gauge Schermbeck 1
 - 75% baseflow at the gauge Kesseler 3
- SWAT+ model, annual averages:
 - 52 mm aquifer discharge (flo_cha)
 - 68 mm surface (surq_gen) and 41 mm lateral flow (latq)
 - 32% groundwater flow

Standard concept of groundwater storage

Separating fast and slow groundwater storage

Some improvements w. split aquifers

Changes to aquifer.aqu					
Parameter	Fast shallow		Slow shallow		Туре
ALPHA	0.76		0.05		Auto calibration
RCHG	0.38		0		Auto calibration
FLO_MIN	2		7		Manual
DP_WT	2		7		Manual
DEP_BOT	5		10		Manual
REVAP	0		0		Manual
Goodness-of-fit comparison					
Setup		NSE	PBIAS	RSR	KGE
1 shallow aquifer		0.49	-39.12	0.71	0.55
2 shallow aquifers		0.61	-22.2	0.62	0.72
Satisfactory model performance threshold (Moriasi et. al 2007		>50	< +/-25	≤0.70 ✓	-

Fast groundwater discharge is better represented, but low flows are still underestimated

- <u>SWAT+ model, annual averages:</u>
 - 84 mm groundwater discharge (aquifer flo_cha)
 - 76 mm surface (surq_gen) and 42 mm lateral flow (latq)
 - 41% groundwater flow (+9%)
- Improved groundwater flow characteristics for fast groundwater components
- Problems with low flow representation remain

Outlook: Studying droughts with SWAT+ as a basis for modelling climate resilience measures

Department of Hydrology and Water Resources Management – Grantz et al.

- <u>Anthropogenic changes</u> to the water balance (here: for a shipping canal system) can have relevant impacts on streamflow – even in large catchments – and should therefore be considered in model setup
- <u>Low flow representation is crucial to studying drought situations</u>
- <u>Baseflow separation</u> with observed data and comparison with SWAT+ model outputs shows differences in groundwater dynamics
- Implementing <u>fast and slow aquifers</u> in SWAT+ can improve fast GW flow representation and model performance
- Substantial changes to aquifer parametrization are a <u>"low-cost" alternative to coupling SWAT+ with a</u> <u>groundwater model</u>
- But currently <u>limitations regarding low-flow situations</u> are apparent

References

Lyne, V., and M. Hollick. 1979. "Stochastic Time-Variable Rainfall-Runoff Modeling." In *Australian National Conference Publication*, 79:89–92.

Moriasi, D. N., et al. "Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations." Transactions of the ASABE, vol. 50, no. 3, 2007, pp. 885–900. doi:10.13031/2013.23153.b

Pfannerstill, M., Guse, B., & Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458.

UFZ Helmholtz Center for Environmental Research. Drought Monitor Germany. <u>https://www.ufz.de/index.php?en=37937</u>

Wagner, Paul D., et al. "Representation of Hydrological Processes in a Rural Lowland Catchment in Northern Germany Using SWAT and SWAT +." Hydrological Processes, vol. 36, no. 5, 2022, doi:10.1002/hyp.14589.

