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The project is focused on developing sustainable food
production systems in the Des Moines Metropolitan Statistical
Area (DMMSA), lowa, USA. Multiple models are being
integrated (co-simulation approach) to evaluate the impact of

converting cropland, peri-urban and/or urban landscapes to
table food production.
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Introduction

%@ SWAT model within the lowa UrbanFEWS:

Quantify crop growth.
* Hydrological cycling.

* Nutrient and sediment cycling and transport for
cropping systems and associated management
practices.

e Simulate future land use change scenarios to
characterize streamflow, nutrient, sediment load
conditions, and yields production.
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Why? The "Corn Belt" region is an important agricultural area in the central United States,
characterized by dense networks of drainage tile. Extensive land alterations in this area have
generated natural landscape loss, water pollution, and other environmental problems. Tile
drainage is responsible for the majority of nitrate load contributions to lowa rivers and streams.

How? Ecohydrological models are key tools for accurate system representation and impact
measurement, and SWAT can simulate tile drainage implementation in a watershed-scale.
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This study intends to calibrate and validate the SWAT model for streamflow and nitrate loads for the Des
Moines River Basin (DMRB), lowa, U.S., with focus on tile-drain calculations.
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STUDY AREA
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SWAT MODEL SETUP AND TILE-DRAIN CONFIGURATION

* |nitial model setup: previous soft-calibrated model.

* Tile drainage configuration: spatial validated tile-drain map (86% confidence in tile-drain locations); subbasin
location.

a) Spatial distribution of tile drainage (shown as green); b) tile-drain zoom-in for the 12-digit subbasin map; and c) representation of the tile drain
and land use map overlap.
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Improved SWAT
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1 step: streamflow

(tile-drain equation testing)
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* Tile parameters’ range defined by literature

SWAT offers two distinct methods: an empirical method
defined as the default/original option and a modified

physically-based Hooghoudt and Kirkham equations
method.
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SWAT MODEL CALIBRATION AND
STATISTICAL ANALYSIS
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* Temporal calibration: years 2001 to 2009, DMRB outlet.

* Spatial validation: years 2001 to 2010, DMRB 24
subbasins.
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The calibration was composed of 1 iteration of 400 runs to
develop best parameters, best ranges, and total uncertainty
bands. The 10% best parameters obtained during the
calibration process were used to carry out the validation.
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SWAT MODEL CALIBRATION AND
STATISTICAL ANALYSIS

Daily
* Temporal calibration: years 2001 to 2009, DMRB outlet.

* Spatial validation: years 2001 to 2010, DMRB 24
subbasins.

The calibration was composed of 1 iteration of 400 runs to
develop best parameters, best ranges, and total uncertainty
bands. The 10% best parameters obtained during the
calibration process were used to carry out the validation.

* Evaluation: NS, KGE, Pbias, FDC, r-factor, p-factor
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Parameter

Initial SCS runoff curve number for
moisture condition I

Baseflow alpha factor

Manning's "n" value for the main channel
Soil evaporation compensation factor
The delay time

Groundwater "revap" coefficient

Threshold depth of water in the shallow
aquifer for
“revap” or percolation to the deep aquifer
to occur

Surface runoff lag coefficient

Distance between drains

Soil lateral saturated hydraulic conductivity
factor

The daily drainage coefficient:
Tile-drain radius

Tile-drain depth
Time required to drain the soil to field
capacity
Tile-drain lag time

Impervious layer depth

r__CN2
v__ALPHA_BF
v__CH_N2
v__ESCO
v__GW_DELAY
v__GW_REVAP

v__REVAPMN

v__SURLAG
v__SDRAIN
v__LATKSATF
v__DRAIN_CO
v__RE
(fix) DDRAIN
(fix) TDRAIN

(fix) GDRAIN
(fix) DEP_IMP

Calibration
range (original
and modified

Min.
-0.2
0.001
0.01
0.6
0
0.02

0.01
7700

13
25
1200
24
48
1200

Max.
0.2
0.5

0.02

1
60
0.2

1000

24
27000
38
48
50
1200
24
48
1200%
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Daily calibration performance - NSE, KGE, Pbias - for original and modified tile-drain calculation methods.

Calibration NSE KGE Pbias p-factor  r-factor
Original 0.70 0.76 18.5 0.39 0.49
Modified 0.71 0.76 18.3 0.41 0.49
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Daily calibration performance - Flow Duration Curve - for original and modified tile-drain calculation methods.
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Daily validation performance — p-factor, r-factor - for original and modified tile-drain calculation methods.
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* The p-factor r-factor coefficients showed similar behavior for both methods.

* The modified method had higher p-factor values for all gauges, except for the gauge 341 that resulted in the same
values for both methods.

* The r-factor was smaller for the original method at 13 gauges, smaller at 2 gauges for the modified method and the
same at 9 gauges
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Daily validation performance — NSE, Pbias, KGE - for original and modified tile-drain calculation methods.
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The daily validation process showed improvement when
applying the modified tile-drain equation .

Original Modified

NSE Pbias KGE NSE Pbias KGE

Very good 0 1 - 0 2 -
Good 4 1 - 8 2 -
Satisfactory 12 3 14 11 1 16

Not satisfactory
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Nitrogen validation

[Nitrogen validation

[

* USGS, IIHR — Daily nitrate
time series, 2 to 9 years
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Highlights

* The percentages of baseflow comparing to the water yield are 84% for the original and 87% for the
modified methods.

* The daily analysis showed the modified method (Hooghoudt and Kirkham equations) has more
accurate spatial variability in representing the hydrological processes at the DMRB.

* A common ground between the methods is that both had difficulty in simulating the streamflow
at the less drained areas of the watershed.

* These results also underscore the increased challenge for SWAT to replicate the magnitude of the
daily streamflow
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Thank you!
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Methods to calculate flow through subsurface tiles

The SWAT offers two distinct methods: an empirical method defined as the default/original option and a modified
physically-based Hooghoudt and Kirkham equations method.

The empirical function composed of four main parameters: 1) tile- The physically-based modified version simulates tile flow as a
drain depth, 2) the time required to drain the soil to field capacity, function of lateral saturated hydraulic conductivity of the soil,
3) tile-drain lag time, and 4) impervious layer depth. profile depth, water table elevation, drain spacing, size, and
()
depth. KIRKHAM
The method creates an impermeable layer and simulates the tile Water Table Soil Surface
flow on days when the height of the water table above the HOOGHOUDT 7 e A S S N
Soil Surface T s i IR
l l Rainfall l l 3 %
Layer 1 (10 mm T ™ ™ it _ Water TETE-“T_‘*M\_\ - & é
Layer 2 (390 mm Percolation layer 2 to 3 i ~— =
| @smm) | EI l@ fz
fe=100 mm v - MmN [ e 4 T — Bl
Layer 3 (600 mm){ Por= ;8: mm v i 5 forain= 1200 mm a v SDRAIN T
?&2 - o F'ler:n\[argr:;y)er 3 (‘n 4 ?25‘ mm SW = 135 mm
rc=_1§gomm ¥ v 1325 mm L St =190 m
sy fesae T @ l = - ~_Impervious Layer
Hestrictive layar { * i ®
l Impervious Layer Figure 2. (a) Drainage with the Hooghoudt (1940) steady-state equa-

Shallow aquifer storage Deep seepage (a) tion and (b) drainage with Kirkham’s equation (van Schilfzaarde et

al., 1957) for a ponded surface.
Figure 1. Diagram showing an example water table calculation after a rainfall event.
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