Quantifying the effects of land-use change and climate variability on water resources in the Pyrenees

International Soil and Water Assessment Tool (SWAT) Conference 26-30 June 2023

Aarhus University, Department of Ecoscience, Denmark

Nerea Bilbao-Barrenetxea, Francisco Segura-Mendez, Patricia Jimenez-Sáez, Gerardo Castellanos-Osorio, Sergio H. Faria, Javier Senent-Aparicio

PhD student at Basque Centre for Climate Change
1. INTRODUCTION

- Mountains provide half of the world’s population with water resources

- Major changes have been observed in the variables and processes that shape the hydrological cycle

- In the Pyrenees there is a general decline in water resources which cannot be explained alone by climatic causes

- This study quantifies independently the contribution of both of these factors

2. STUDY AREA: Anduña River basin

- Located in the western Pyrenees, Spain (4,728.61 ha).
- Orographically complex
- Atlantic Climate
- Land-Use Evolution: Shift from agrarian to forest since 1956
- Giving rise to a land primarily occupied by forests (conifers and hardwoods)
3. DATA AND METHODS

Figure 2. Flowchart of the methodology

DATA AND MODEL PREPARATION

STEP 1: Trend analysis
- Climate trend analysis
- Climate data
- Land Use data
- Soil data
- DEM

STEP 2: SWAT model

SCENARIOS

STEP 3:
- Climate data: 1951-1985
 - Land use data: 1956
- Climate data: 1986-2021
 - Land use data: 1956
- Climate data: 1986-2021
 - Land use data: 2000

Scenario A
- CC

Scenario B
- LULC

Scenario C
- All factors

IMPACTS

Aplication of IAHRS for IHA calculation
3. DATA AND METHODS

QUANTIFYING THE EFFECTS OF LAND-USE CHANGE AND CLIMATE VARIABILITY ON WATER RESOURCES IN THE PYRENEES

Figure 2. Flowchart of the methodology
3. DATA AND METHODS

3.1. Trend analysis of climate variables

- Climate variables: Maximum temperature, minimum temperature and precipitation
- Mann-Kendall trend test
- Significance assessed using the Z-test
- Sens' slope employed to estimate the magnitude of linear trends, providing a robust measure less sensitive to outliers.
3. DATA AND METHODS

3.2. SWAT model

- Input Data for SWAT Model:
 - **DEM** data obtained from the Spanish Geographical Institute with a spatial resolution of 25 m x 25 m.
 - Harmonized World **Soil Map** used with a spatial resolution of 1 km x 1 km.
 - **Climate data**: Maximum temperature, minimum temperature, and precipitation data for 1951-1985 and 1986-2020 obtained from AEMET with a spatial resolution of 5 km x 5 km and daily temporal frequency.
 - **Land-use data**: Reference land-use maps from 1956 and 2000 obtained from the Government of Navarre regional sources.
 - **Discharge observations** of Izalzu outlet (CEDEX)

![Flowchart of the methodology](image)
3. DATA AND METHODS

3.2. SWAT model

- Calibration and validation
 - SWAT-CUP → SUFI-2 algorithm
 - Sensitivity analysis (500 iterations)
 - Objective function: KGE
 - 1,000 iterations: 500 + 500

\[
\text{NSE} = 1 - \frac{\sum_{i=1}^{n}(O_i - S_i)^2}{\sum_{i=1}^{n}(O_i - \bar{O})^2}
\]

\[
\text{PBIAS} = \frac{\sum_{i=1}^{n}(O_i - S_i)}{\sum_{i=1}^{n}(O_i)} \times 100
\]

\[
R^2 = \left(\frac{\sum_{i=1}^{n}(O_i - \bar{O})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^{n}(O_i - \bar{O})^2 \sum_{i=1}^{n}(S_i - \bar{S})^2}} \right)^2
\]

\[
\text{KGE} = 1 - \sqrt{(r - 1)^2 + \left(\frac{\bar{O}}{\bar{S}} - 1 \right)^2 + \left(\frac{\bar{S}}{\bar{O}} - 1 \right)^2}
\]

Figure 2. Flowchart of the methodology

3. DATA AND METHODS

3.4. Indicators of hydrological alteration: IAHRIS

- Provides information on the degree of alteration between a simulated and baseline scenario (Scenario A, B and C)
- Was developed in Spain to address the requirements of the European Water Framework Directive
- IAHRIS establishes the IHA related to the maximum extreme (floods), minimum extreme (droughts), and usual values

IGA: Index on Global Alteration

0 → Maximum disturbance
1 → No disturbance

4. RESULTS

4.1. Trend analysis

<table>
<thead>
<tr>
<th>Precipitation</th>
<th>Test Z</th>
<th>Sig.</th>
<th>Q_i</th>
<th>Maximum Temperature</th>
<th>Test Z</th>
<th>Sig.</th>
<th>Q_i</th>
<th>Minimum Temperature</th>
<th>Test Z</th>
<th>Sig.</th>
<th>Q_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>jan</td>
<td>1.350</td>
<td></td>
<td>0.028</td>
<td></td>
<td>2.134</td>
<td></td>
<td>0.019</td>
<td></td>
<td>2.809</td>
<td>**</td>
<td>0.028</td>
</tr>
<tr>
<td>feb</td>
<td>0.715</td>
<td>0.012</td>
<td></td>
<td></td>
<td>1.107</td>
<td>0.018</td>
<td></td>
<td></td>
<td>1.817</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>mar</td>
<td>0.745</td>
<td>0.012</td>
<td></td>
<td></td>
<td>1.191</td>
<td>0.016</td>
<td></td>
<td></td>
<td>1.995</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>apr</td>
<td>0.645</td>
<td>0.008</td>
<td></td>
<td></td>
<td>2.144</td>
<td>0.028</td>
<td></td>
<td></td>
<td>1.936</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>may</td>
<td>0.735</td>
<td>0.008</td>
<td></td>
<td></td>
<td>1.698</td>
<td>0.024</td>
<td></td>
<td></td>
<td>1.886</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>jun</td>
<td>-0.139</td>
<td>-0.002</td>
<td></td>
<td></td>
<td>3.743</td>
<td>***</td>
<td>0.046</td>
<td></td>
<td>4.070</td>
<td>***</td>
<td>0.027</td>
</tr>
<tr>
<td>jul</td>
<td>1.489</td>
<td></td>
<td>0.009</td>
<td></td>
<td>3.703</td>
<td>**</td>
<td>0.041</td>
<td></td>
<td>3.946</td>
<td>***</td>
<td>0.025</td>
</tr>
<tr>
<td>aug</td>
<td>0.010</td>
<td>0.000</td>
<td></td>
<td></td>
<td>3.345</td>
<td>***</td>
<td>0.041</td>
<td></td>
<td>4.358</td>
<td>***</td>
<td>0.028</td>
</tr>
<tr>
<td>sep</td>
<td>-0.199</td>
<td>-0.002</td>
<td></td>
<td></td>
<td>0.893</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.655</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>oct</td>
<td>0.705</td>
<td>0.012</td>
<td></td>
<td></td>
<td>2.144</td>
<td>0.026</td>
<td></td>
<td></td>
<td>3.018</td>
<td>**</td>
<td>0.025</td>
</tr>
<tr>
<td>nov</td>
<td>1.201</td>
<td>0.024</td>
<td></td>
<td></td>
<td>1.152</td>
<td>0.013</td>
<td></td>
<td></td>
<td>2.422</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>dec</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td>1.102</td>
<td>0.012</td>
<td></td>
<td></td>
<td>1.648</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>annual</td>
<td>1.896</td>
<td>**</td>
<td>0.009</td>
<td></td>
<td>4.735</td>
<td>***</td>
<td>0.028</td>
<td></td>
<td>5.490</td>
<td>***</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Table 3: Trend analysis results.

[6] Lemus-Canovas et al., 2019
4. RESULTS

4.2. Land-use change

Table 2. Land-use type data

<table>
<thead>
<tr>
<th>Land Cover Type</th>
<th>Area Coverage km² (%)</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare Soil</td>
<td>15 (0.3%)</td>
<td>23 (0.5%)</td>
</tr>
<tr>
<td>Broad-leaved Forest</td>
<td>1604 (33.2%)</td>
<td>1872 (38.8%)</td>
</tr>
<tr>
<td>Coniferous Forest Evergreen</td>
<td>334 (6.9%)</td>
<td>1331 (27.5%)</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>171 (3.5%)</td>
<td>347 (7.2%)</td>
</tr>
<tr>
<td>Pasture</td>
<td>2101 (43.5%)</td>
<td>1075 (22.3%)</td>
</tr>
<tr>
<td>Shrub</td>
<td>607 (12.6%)</td>
<td>183 (3.8%)</td>
</tr>
</tbody>
</table>

Figure 3. : Land-use change tranformation.
4. RESULTS

4.3. Calibration and validation

Table 3. Calibration parameters code, description, initial calibration range and final optimal value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Calibration Range</th>
<th>Adjusted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esco</td>
<td>Soil evaporation compensation factor</td>
<td>0 – 1</td>
<td>0.7543</td>
</tr>
<tr>
<td>Epeo</td>
<td>Plant uptake compensation factor</td>
<td>0 – 1</td>
<td>0.7325</td>
</tr>
<tr>
<td>Cn2</td>
<td>Initial SCS runoff curve number condition II</td>
<td>±20 %</td>
<td>19.88</td>
</tr>
<tr>
<td>Awc</td>
<td>Available water capacity</td>
<td>±20 %</td>
<td>12.04</td>
</tr>
<tr>
<td>Snofallmp</td>
<td>Snowfall temperature (°C)</td>
<td>-5 – 5</td>
<td>0.491</td>
</tr>
<tr>
<td>Snomeltmp</td>
<td>Snowmelt base temperature (°C)</td>
<td>-5 – 5</td>
<td>2.465</td>
</tr>
<tr>
<td>Snomelmax</td>
<td>Maximum melt rate of snow during a year (mm °C-1 day -1)</td>
<td>0 – 10</td>
<td>5.206</td>
</tr>
<tr>
<td>Snomelmin</td>
<td>Minimum melt rate of snow during a year (mm °C-1 day -1)</td>
<td>0 – 10</td>
<td>1.276</td>
</tr>
<tr>
<td>Snomeltlag</td>
<td>Snow pack temperature lag factor</td>
<td>0 – 1</td>
<td>0.973</td>
</tr>
</tbody>
</table>

Table 4. Calibration and validation statistical values on a daily basis

<table>
<thead>
<tr>
<th>Period</th>
<th>R²</th>
<th>NSE</th>
<th>PBIAS</th>
<th>KGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration (1992-2004)</td>
<td>0.72</td>
<td>0.51</td>
<td>-12.67</td>
<td>0.55</td>
</tr>
<tr>
<td>Validation (2005-2018)</td>
<td>0.75</td>
<td>0.55</td>
<td>-16.49</td>
<td>0.62</td>
</tr>
</tbody>
</table>

[7] Kallin et al., 2010

Parameters derived from the Sensitive analysis
Parameters selected from literature

Simulation of Scenarios A, B and C

Very good
Satisfactory
4. RESULTS

4.4. Impacts of land-use change and climate variability on hydrological regime

Annual Balance of the Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>P</th>
<th>ET</th>
<th>Runoff</th>
<th>Change ET</th>
<th>Change Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1718.3</td>
<td>576.6</td>
<td>1100.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1722.2</td>
<td>592.1</td>
<td>1079.1</td>
<td>15.5</td>
<td>-21.2</td>
</tr>
<tr>
<td>C</td>
<td>1722.2</td>
<td>607.6</td>
<td>1064.1</td>
<td>31.0</td>
<td>-36.1</td>
</tr>
</tbody>
</table>

Table 5. Simulated average annual runoff and ET under Scenarios A, B and C (mm)

Flood alteration

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Q_c</th>
<th>ED</th>
<th>CD</th>
<th>FF</th>
<th>CV(Q_c)</th>
<th>CV(FF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.21</td>
<td>10.05</td>
<td>13.50</td>
<td>4.31</td>
<td>0.40</td>
<td>0.24</td>
</tr>
<tr>
<td>B</td>
<td>15.90</td>
<td>15.30</td>
<td>20.00</td>
<td>4.25</td>
<td>0.44</td>
<td>0.23</td>
</tr>
<tr>
<td>C</td>
<td>15.06</td>
<td>14.40</td>
<td>18.80</td>
<td>4.22</td>
<td>0.43</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table 6. Flood parameters of over A, B and C scenarios (mm)

- Precipitation increases minimally
- Rise of temperatures lead to an increase in ET
- The contribution of each of the factors in the increase of ET was 50%
- In the runoff decrease, land-use impact (41.36%) was almost as important as climate variability (58.64%)
- Climate variability generated increases of more than 40% in the variables Q_c (Average of the max. daily flow), ED and CD
- The alteration of these variables is slightly mitigated, with decrease values around 5% by reforestation
4. RESULTS

4.5. Indicators of hydrological alteration

Figure 4. Spider charts of IHAs and IGA values for habitual values, floods and droughts for Impact A-B and Impact A-C.
4. RESULTS

4.5. Indicators of hydrological alteration

- V1 (variability of annual volume) is driven by climatic causes.
- V2 (monthly volume variability) is determined by land-use change.

Figure 4: Spider charts of IHAs and IGA values for habitual values, floods and droughts for Impact A-B and Impact A-C.
4. RESULTS

4.5. Indicators of hydrological alteration

- The most altered regime
- Alteration entirely due to climatic causes
- Slightly alleviated by reforestation process
- IHA9 (Magnitude of Connectivity Flow) is the most affected
- IHA7 (Magnitude of maximum floods) and IHA8 (Magnitude of effective discharge)

CONSEQUENCES:
- Deficiencies on the transport to the floodplain and riparian river system
- Successional dynamics and aging of riparian habitat

[8] Larsen et al., 2019
4. RESULTS

4.5. Indicators of hydrological alteration

- The major alterations occurred in magnitude and frequency
- The combined effect of both factors exacerbate the alterations on the hydrological regime

Figure 4: Spider charts of IHAs and IGA values for habitual values, floods and droughts for Impact A-B and Impact A-C.
4. RESULTS

4.5. Indicators of hydrological alteration

- **H6 (variability of streamflow for each month):**
 - Increases were observed during March, June and October while decreases in variability were detected for winter months

- **H8 / H9 (Maximum/ Minimum relative frequency of the month):**
 - As a consequence of climate variability the probability of the annual maximum occurring in April increases
 - The probability of the minimum in September increases

CONSEQUENCES:
- These alterations in the natural seasonal patterns could produce distortions on the synchrony with the life cycle of the species

![Figure 5. Monthly values for IAHRIS parameters under A, B and C scenario](image)
5. Conclusions

- The favorable results of the model of the Anduña River Basin validate it for the daily simulation of the Scenarios.
- The climate trend analysis revealed a significant positive trend for maximum and minimum temperatures and a slight positive trend in precipitation (Lemus-Canovas et al., 2018).
- A radical transformation of the distribution of land-use in the basin was observed, from a land dominated by pastures and shrubs to a basin where forests are predominant.
- Climate change and the greenness process have decreased the mean annual streamflow in the Anduña River basin.
- The contribution of climate change is of 58.6%, while the contribution attributed to the greenness process is of 41.1% (Juez et al., 2022; Vicente-Serrano et al., 2021; López-Moreno et al., 2008).
- Increase of floods caused by climatic causes (Roy et al., 2001; Stoffel et al., 2016). This increase is attenuated by the reforestation process.
- In the cases of the usual values and extreme minimums (droughts), the reforestation process acted as an aggravating factor in altering the water regime, together with climatic causes.
5. References

Quantifying the effects of land-use change and climate variability on water resources in the Pyrenees

Nerea Bilbao-Barrenetxea, Francisco Segura-Mendez, Patricia Jimenez-Sáez, Gerardo Castellanos-Osorio, Sergio H. Faria, Javier Senent-Aparicio

PhD student at Basque Centre for Climate Change