Quantifying the effects of land-use change and climate variability on water resources in the Pyrenees

International Soil and Water Assessment Tool (SWAT) Conference 26-30 June 2023

Aarhus University, Deparment of Ecoscience, Denmark

Nerea Bilbao-Barrenetxea, Francisco Segura-Mendez, Patricia Jimenez-Sáez, Gerardo Castellanos-Osorio, Sergio H. Faria, Javier Senent-Aparicio

PhD student at Basque Centre for Climate Change

1. INTRODUCTION

- Mountains provide half of the world's population with water resources
- Major changes have been observed in the variables and processes that shape the hydrological cycle
- In the Pyrenees there is a general decline in water resources which cannot be explained alone by ¹climatic causes

 This study quantifies independently the contribution of both of these factors

[1] Juez et al., 2022; [2] Lorenzo-Lacruz et al.,2012; [3] Martínez- Fernández et al., 2013

-1/20 -

QUANTIFYING THE EFFECTS OF LAND-USE CHANGE AND CLIMATE VARIABILITY ON WATER RESOURCES IN THE PYRENEES

Nerea Bilbao-Barrenetxea

BASQUE CENTRE FOR CLIMATE CHANGE Klima Aldaketa Ikergai

2. STUDY AREA: Anduña River basin

QUANTIFYING THE EFFECTS OF LAND-USE CHANGE AND CLIMATE VARIABILITY ON WATER RESOURCES IN THE PYRENEES

- Located in the western Pyrenees, Spain (4,728.61 ha).
- **Orographically complex**
- Atlantic Climate
- Land-Use Evolution: Shift from agrarian to forest since 1956
- **Giving rise to a land primarily occupied by forests** (conifers and hardwoods)

CLIMATE CHANGE

EXCELENCIA

DE MAEZTU 2023 - 2027

MARÍA

Figure 2. Flowchart of the methodology

EXCELENCIA

DE MAEZTU 2023 - 2027

MARÍA

QUANTIFYING THE EFFECTS OF LAND-USE CHANGE AND CLIMATE VARIABILITY ON WATER RESOURCES IN THE PYRENEES

Nerea

Bilbao-Barrenetxea

EXCELENCIA MARÍA DE MAEZTU 2023 - 2027

-4/20 -

QUANTIFYING THE EFFECTS OF LAND-USE CHANGE AND CLIMATE VARIABILITY ON WATER RESOURCES IN THE PYRENEES

3.1. Trend analysis of climate variables

- Climate variables: Maximum temperature, minimum temperature and precipitation
- Mann-Kendall trend test
- Significance assessed using the Z-test
- Sens' slope employed to estimate the magnitude of linear trends, providing a robust measure less sensitive to outliers.

Figure 2. Flowchart of the methodology

3.2. SWAT model

- Input Data for SWAT Model:
 - **<u>DEM</u>** data obtained from the Spanish Geographical Institute with a spatial resolution of 25 m x 25 m.
 - Harmonized World <u>Soil Map</u> used with a spatial resolution of 1 km x 1 km.
 - <u>Climate data</u>: Maximum temperature, minimum temperature, and precipitation data for 1951-1985 and 1986-2020 obtained from AEMET with a spatial resolution of 5 km x 5 km and daily temporal frequency.
 - <u>Land-use data</u>: Reference land-use maps from 1956 and 2000 obtained from the Government of Navarra regional sources.
 - Discharge observations of Izalzu outlet (CEDEX)

Figure 2. Flowchart of the methodology

3. DATA AND METHODS 3.2. SWAT model

- Calibration and validation
 - SWAT-CUP \rightarrow SUFI-2 algorithm
 - Sensitivity analysis (500 iterations) .

NSE = $1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}$ PBIAS = $\frac{\sum_{i=1}^{n} (O_i - S_i)}{\sum_{i=1}^{n} (O_i)} \times 100$

- **Objetive function: KGE**
- 1,000 iterations: 500 + 500 .

 $\mathrm{KGE} = 1 - \sqrt{(r-1)^2 + (\frac{\delta_S}{\delta_O} - 1)^2 + (\frac{\bar{S}}{\bar{O}} - 1)^2}$

EXCELENCIA

DE MAEZTU 2023 - 2027

MARÍA

Bilbao-Barrenetxea

QUANTIFYING THE EFFECTS OF LAND-USE CHANGE AND CLIMATE VARIABILITY ON WATER RESOURCES IN THE PYRENEES

3.4. Indicators of hydrological alteration: IAHRIS

- Provides information on the degree of alteration between a simulated and baseline scenario (Scenario A, B and C)
- Was developed in Spain to address the requirements of the European Water Framework Directive
- IAHRIS establishes the IHA related to the maximum extreme (floods), minimum extreme (droughts), and usual values

IGA: Index on Global Alteration

Figure 2. Flowchart of the methodology

4. RESULTS *4.1. Trend analysis*

	Precipitation			Maximum Temp	perature			Minimum Temperature		
	Test Z	Sig.	Q_i		Test Z	Sig.	Q_i	Test Z	Sig.	Q_i
jan	1.350		0.028		2.134		0.019	2.809	**	0.028
feb	0.715		0.012		1.107		0.018	1.817		0.022
mar	0.745		0.012		1.191		0.016	1.995		0.015
apr	0.645		0.008		2.144		0.028	1.936		0.014
may	0.735		0.008		1.698		0.024	1.886		0.016
jun	-0.139		-0.002		3.743	***	0.046	4.070	***	0.027
jul	1.489		0.009		3.703	**	0.041	3.946	***	0.025
aug	0.010		0.000		3.345	***	0.041	4.358	***	0.028
sep	-0.199		-0.002		0.893		0.012	0.655		0.006
oct	0.705		0.012		2.144		0.026	3.018	**	0.025
nov	1.201		0.024		1.152		0.013	2.422		0.022
dec	0.000		0.000	6	1.102		0.012	1.648		0.015
annual	1.896	**	0.009		4.735	***	0.028	5.490	***	0.021

Table 3. : Trend analysis results.

Nerea Bilbao-Barrenetxea

2000

4. RESULTS 4.2. Land-use change

	Tab	ole 2. Land-use	type data
Land Cover Type	Area Coverage km^2 (%)		Change (%)
	1956	2000	1956-2000
Bare Soil	15 (0.3%)	23 (0.5%)	0.23
Broad-leaved Forest	1604 (33.2%)	1872 (38.8%)	6.71
Coniferous Forest Evergreen	334 (6.9%)	1331 (27.5%)	19.62
Mixed Forest	171 (3.5%)	347 (7.2%)	5.61
Pasture	2101 (43.5%)	1075 (22.3%)	-22.60
Shrub	607 (12.6%)	183 (3.8%)	-9.88

Figure 3. : Land-use change tranformation.

BASQUE CENTRE FOR CLIMATE CHANGE Klima Aldaketa Ikergai

Bare soil

Mixed Forest

Pasture

Scrub

Bilbao-Barrenetxea

1956

4. RESULTS

2023 - 2027

4.3. Calibration and validation

		Table 3. Cali	bration p	aramete	rs code, des	cription, init	ial calibration rai	nge and final o	ptimal value	
	Paramete	r Description					Calibration F	Range Adju	sted Value	-
Parameters	Esco	Soil evaporation compe	nsation f	actor			0 – 1	(0,7543	-
derived from the	Epco	Plant uptake compensat	ion facto	or			0 - 1	(0,7325	
Sensitive	Cn_2	Initial SCS runoff curve	number	condition	on II		±20 %		-19.88	
analysis	A_{wc}	Available water capacity	<i>y</i>				±20 %		12.04	
	Snofallt	<i>mp</i> Snowfall temperature (°	C)				-5 - 5		0,491	
Parameters	Snomeltt	mp Snowmelt base tempera	ture (°C)			-5 – 5		2,465	
selected from	Snomeltn	nax Maximum melt rate of s	now dur	ring a ye	ar (mm ⁰C	-1 day -1)	0 - 10		5,206	
literature	Snomeltn	nin Minimum melt rate of s	now duri	ing a ye	ar (mm °C	-1 day -1)	0 – 10		1,276	
	Snomeltl	ag Snow pack temperature	lag facto	or			0 - 1		0,973	_
	Tak	Period Calibration (1992-2004) Validation (2005-2018) Table 4. Calibration and validation	R ² 0.72 0.75	NSE 0.51 0.55 cal value	PBIAS -12.67 -16.49	7 KGE 0.55 0.62 basis	[Very goo	od	Simulation of Scenarios A, B and C
7] Kallin et al., 2010		-11/20 -			Bilbao-Barr	Nerea enetxea		ASQUE CEN OR CLIMATE ima Aldaketa II	TRE CHANGE ^{kergai}	EXCELENCIA MARÍA DE MAEZTU

4. RESULTS

4.4. Impacts of land-use change and climate variability on hydrological regime

Annual Balance of the Scenarios

Scenarios	Р	ET	Runoff	Change ET	Change Runoff
А	1718.3	576.6	1100.2		
В	1722.2	592.1	1079.1	15.5	-21.2
С	1722.2	607.6	1064.1	31.0	-36.1

Table 5. : Simulated average annual runoff and ET under Scenarios A, B and C (mm)

- Precipitation increases minimally
- Rise of temperatures lead to an increase in ET
- The contribution of each of the factors in the increase of ET was 50%
- In the runoff decrease, land-use impact (41.36%) was almost as important as climate variability (58.64%)

Flood alteration

						1	
	Scenarios	Q_c	ED	CD	\mathbf{FF}	$\mathrm{CV}(Q_c)$	$\mathrm{CV}(\mathrm{FF})$
	А	11.21	10.05	13.50	4.31	0.40	0.24
	В	15.90	15.30	20.00	4.25	0.44	0.23
>	С	15.06	14.40	18.80	4.22	0.43	0.23

Table 6. Flood parameters of over A, B and C scenarios (mm)

- Climate variability generated increases of more tan 40% in the variables Qc (Average of the max. daily flow), ED and CD
- The alteration of these variables is slightly mitigated, with decrease values around 5% by reforestation

4. RESULTS *4.5. Indicators of hydrological alteration*

EXCELENCIA

DE MAEZTU 2023 - 2027

MARÍA

4. RESULTS *4.5. Indicators of hydrological alteration*

4. RESULTS 4.5. Indicators of hydrological alteration

- The most altered regime
- Alteration entirely due to climatic IAH21 causes
- Slightly alleviated by reforestation process
- IHA9 (Magnitude of Connectivity Flow) is the most affected
- (Magnitude of máximum IHA7 floods) and IHA8 (Magnitude of effective discharge)

CONSECUENCES:

- Deficiencies on the • transport to the floodplain and
 - riparian river system
- Successional •

dynamics and aging of riparian habitat

EXCELENCIA

DE MAEZTU

2023 - 2027

MARÍA

Figure 4. : Spider charts of IHAs and IGA values for habitual values, floods and droughts for Impact A-B and Impact A-C.

Larsen et al., 2019; hl et al.. 2015

Nered Bilbao-Barrenetxed

4. RESULTS 4.5. Indicators of hydrological alteration

- The major alterations • occurred in magnitude and frequency
- The combined effect of • both factors exhacerbate the alterations on the hydrological regime

Bilbao-Barrenetxea

4. RESULTS *4.5. Indicators of hydrological alteration*

- H6 (variability of streamflow for each month):
 - Increases were observed during March, June and October while decreases in variability were detected for winter months
- H8 / H9 (Maximum / Minimum relative frequency of the month):
 - As a consequence of climate variability the probability of the annual maximum occurring in April increases
 - The probability of the minimum in September increases

CONSECUENCES:

• These alterations in the natural seasonal patterns could produce distorsions on the sycrhony with the life cycle of the species

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
6_A	2.82	2.46	2.49	2.33	2.04	1.34	0.87	1.02	1.06	2.62	3.36	3.40
6_B H	2.78	2.49	3.43	2.20	1.80	1.90	1.05	0.60	0.97	2.70	2.55	3.04
H J	2.80	2.50	3.44	2.21	1.79	1.90	1.03	0.58	0.88	2.61	2.51	3.06
Ĩ	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
8_A	0.18	0.09	0.24	0.12	0.00	0.03	0.00	0.00	0.00	0.03	0.12	0.18
8_B H	0.18	0.06	0.26	0.21	0.06	0.00	0.00	0.00	0.00	0.06	0.03	0.15
8_C H	0.15	0.06	0.29	0.21	0.06	0.00	0.00	0.00	0.00	0.06	0.03	0.15
9_A H	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.52	0.18	0.15	0.03	0.00
9_B H	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.50	0.41	0.03	0.03	0.00
9_C H	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.47	0.41	0.06	0.03	0.00

Figure 5. Monthly values for IAHRIS parameters under A, B and C scenario

EXCELENCIA MARÍA DE MAEZTU 2023 - 2027

5. Conclussions

- The favorable results of the model of the Anduña River Basin validate it for the daily simulation of the Scenarios
- The climate trend analysis revealed a significant positive trend for maximum and minimum temperatures and a slight positive trend in precipitation (Lemus-Canovas et al., 2018)
- A radical transformation of the distribution of land-use in the basin was observed, from a land dominated by
 pastures and shrubs to a basin were forests are predominant
- Climate change and the greenness process have decreased the mean annual streamflow in the Anduña River basin
- The contribution of climate change is of 58.6 %, while the contribution attributed to the greenness process is of 41.1 % ((Juez et al., 2022; Vicente-Serrano et al., 2021; López-Moreno et al., 2008)
- Increase of floods caused by climatic causes (Roy et al., 2001; Stoffel et al., 2016). This increase is attenuated by the reforestation process.
- In the cases of the usual values and extreme minimums (droughts), the reforestation process acted as an aggravating factor in altering the water regime, together with climatic causes.

5. References

- Juez, C., Garijo, N., Nadal-Romero, E., Vicente-Serrano, S.M., 2022. Waveletanalysis of hydro-climatic time-series and vegetation trends of the Up-per Aragón catchment (Central Spanish Pyrenees). Journal of Hydrology614, 128584. URL: <u>https://doi.org/10.1016/j.jhydrol.2022.128584,doi:10.1016/j.jhydrol.2022.128584</u>.
- Lorenzo-Lacruz, J., Vicente-Serrano, S.M., L'opez-Moreno, J.I., Morán-Tejeda, E., Zabalza, J., 2012. Recent trends in Iberianstreamflows (1945-2005). Journal of Hydrology 414-415, 463–475. URL: <u>http://dx.doi.org/10.1016/j.jhydrol.2011.11.023,doi:10.1016/j.jhydrol.2011.11.023</u>.
- Martínez-Fernández, J., S anchez, N., Herrero-Jiménez, C.M., 2013. Re-cent trends in rivers with near-natural flow regime: The case of theriver headwaters in Spain. Progress in Physical Geography 37, 685–700.doi:10.1177/0309133313496834.
- Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologicand water quality models: Performance measures and evaluation criteria. Transactions of the ASABE 58, 1763–1785. doi:10.13031/trans.58.10715.
- Papadaki, C., Soulis, K., Muñoz-Mas, R., Martinez-Capel, F., Zoga-ris, S., Ntoanidis, L., Dimitriou, E., 2016. Potential impacts of cli-mate change on flow regime and fish habitat in mountain rivers of thesouth-western Balkans. Science of the Total Environment 540, 418–428. URL: http://dx.doi.org/10.1016/j.scitotenv.2015.06.134, doi:10.1016/j.scitotenv.2015.06.134, doi:10.1016/j.scitotenv.2015.06.134
- Lorenzo-Lacruz, J., Vicente-Serrano, S.M., L´opez-Moreno, J.I., Mor´an-Tejeda, E., Zabalza, J., 2012. Recent trends in Iberianstreamflows (1945-2005). Journal of Hydrology 414-415, 463–475. URL: <u>http://dx.doi.org/10.1016/j.jhydrol.2011.11.023,doi:10.1016/j.jhydrol.2011.11.023</u>
- Kalin, L., Isik, S., Schoonover, J.E., Lockaby, B.G., 2010. Predict-ing Water Quality in Unmonitored Watersheds Using Artificial Neu-al Networks. Journal of Environmental Quality 39, 1429–1440.doi:10.2134/jeq2009.0441
- Larsen, S., Karaus, U., Claret, C., Sporka, F., Hamerl ik, L., Tockner, K., 2019. Flooding and hydrologic connectivity modulate community as-sembly in a dynamic river-floodplain ecosystem. PLoS ONE 14, 1–22.doi:10.1371/journal.pone.0213227
- Wohl, E., Bledsoe, B.P., Jacobson, R.B., Poff, N.L., Rathburn, S.L., Walters, D.M., Wilcox, A.C., 2015. The natural sediment regime in rivers: Broad-ening the foundation for ecosystem management. BioScience 65, 358–371.doi:10.1093/biosci/biv002

-19/20 -

Nerea

EXCELENCIA MARÍA DE MAEZTU 2023 - 2027

HANGE

Quantifying the effects of land-use change and climate variability on water resources in the Pyrenees

International Soil and Water Assessment Tool (SWAT) Conference 26-30 June 2023

Aarhus University, Deparment of Ecoscience, Denmark

Nerea Bilbao-Barrenetxea, Francisco Segura-Mendez, Patricia Jimenez-Sáez, Gerardo Castellanos-Osorio, Sergio H. Faria, Javier Senent-Aparicio

PhD student at Basque Centre for Climate Change

EXCELENCIA MARÍA DE MAEZTU 2023 - 2027