





# Illinois River Basin (IRB) Calibration and Load Reduction Strategies using OK-HAWQS



Katie Mendoza, Sam Moore, Sagarika Rath, Raghavan Srinivasan Texas AgriLife Research, Texas A&M University

> **Brad Rogers, Greg Kloxin, Shanon Philips** Oklahoma Conservation Commission



# Why the IRB?

- Located along the OK and AR boarder
- Urban areas in the northeast headwaters
- Cattle grazing across both states
- Poultry farms concentrated in AR
- Water quality degradation starting in the 1980's
- Ongoing litigation for 20+ years between Arkansas and Oklahoma
- In 2022 most rivers and Lake Tenkiller listed as Category 5 impairments on EPA 303d list
- Requires management strategies to reduce N and P loading into the waterways



# Why use HAWQS?

- Web-based interactive water quantity and quality modeling systems using SWAT as the core modeling engine
- Supplied with Federally Approved Input Dataset
- Allows analysis at various watershed scales
- Supports simple and complex economic, policy, and impact analyses on:

Flow, Sediments, Nutrients, pathogens









# **Benefits of HAWQS**

- Datasets, tools, and output visualizations are public domain
- Cloud based interface (accessed by phone/ tablet/ laptop/ desktop)
- Complete input datasets compatible across SWAT versions
- Calibrated models
- Model sharing, uploading, and group access to projects
- Output coupled with other models (CE-QUAL-W2, WMOST, AQUATOX, and others)
- More efficient reduces SWAT modeling time and effort by 90%









# **Oklahoma (OK)-HAWQS**

### Inputs (Federally Approved):

Modeled at the huc12 scale [~100 km<sup>2</sup>] for subbasins and streams (NHDPlus v2)

OK.HAW

- County level soil (SSURGO)
- Land Use for crops, fields, and wetlands (NLCD 2019, NASS-CDL 2017-19, NWI)
- High resolution Weather Data (PRISM)
- 10-meter DEM Elevation (NED)
- Current Point Sources (ICIS-NPDES)

### **State Specific Inputs:**

- Local management for urban areas
- **Local** management for pasture lands for grazing cattle, hog and dairy farms, poultry litter, and fertilizer

### **Calibration Data:**

- USGS Gages for Flow
- USGS, DEQ, and AWRC Gages for Water Quality





Hydrologic and Water Quality System

Oklahoma Watershed and Water Quality Assessment Tool





Wetlands

1.2%

Pasture

40.6%

# **Model Set-up**

- IRB model created using subbasin 111101030906 (Lake Tenkiller) as outlet (HUC12 scale)
  - Model had 46 subbasins
  - 6,906 HRUs

Range

2.2%

- total land area of 3,976.24 km<sup>2</sup> (981,962 acres)
- Scenario was created and run:
  - PRISM Weather Data
  - Simulation from 1/1/1998 to 12/31/2020
  - 2-year warm-up period
  - Daily output print setting
  - SWAT model Rev 688
  - Management updated using literature values and stakeholder input



TEXAS A&M

RESEARCH

# **Urban Management**

#### Automatic Fertilization

N application when stress factor falls below 0.8 P application when stress factor falls below 0.5

#### Automatic Irrigation

25mm water applied when soil moisture falls below 60%

#### • Mowing

Lawn mowed 6 times per growing cycle

# Hog and Dairy Farms

 Hog and Dairy Farm locations and application amount from AR DEQ Permit Data System







#### **Active Poultry Houses**

# **Poultry Litter Application**

- 1811 houses
  - 466 houses (97 farms) in OK
  - 1345 houses (281 farms) in AR

#### Number of Birds

- Houses >10 = 46,000 birds per house/cycle
- Houses <=10 = 24,000 birds per house/cycle</li>
- 5 cycles of birds for 45 days each
- 234,557,040 in IRB
  - 53,027,040 in OK
  - 181,530,000 in AR

#### Litter Application

- 50% of litter is exported out of state, 50% applied
- 6.7 tonnes/ha applied once in March
- 224 kg/ha of Nitrogen in May and September
- Total applied 115,720 tonnes/year onto 10.2% in the IRB
  - 5.5% in OK and 13.7% in AR







### **Grazing using Well Managed and Over Grazed**

#### Cattle in the IRB

- ~168,000
- Stocking rate of 1 cattle/ha

#### **Grazing Management**

- Mittelstet et. al. (2016)
- 66.5% Well Managed (220 days)
- 33.5% Over Grazed (270 days)







### **Distribution of Managed Land**

| (km²)                            | <b>IRB Watershed</b> | Arkansas             | Oklahoma |
|----------------------------------|----------------------|----------------------|----------|
|                                  | 1,729.7              | 1018.9               | 710.9    |
| Total Pasture Area               |                      | (58.9%)              | (41.1%)  |
|                                  | 28.7                 | 28.7                 | 0        |
| Hog Farms                        | (1.7%)               | (2.8%)               |          |
|                                  | 18.6                 | 18.6                 | 0        |
| Dairy Farms                      | (1.1%)               | (1.8%)               |          |
|                                  | 1,682.4              | 971.5                | 710.9    |
| Grazing Cattle Total             | (97.3%)              | (95.4%)              | (100%)   |
|                                  | 101.3                | 82.2                 | 19.1     |
| Well Managed with Poultry Litter | (6.0%)               | <mark>(8.5%)</mark>  | (2.7%)   |
|                                  | 999.7                | 443.0                | 556.8    |
| Well Managed                     | (59.4%)              | (45.6%)              | (78.3%)  |
|                                  | 70.7                 | 50.8                 | 19.9     |
| Over Grazed with Poultry Litter  | (4.2%)               | <mark>(5.2%)</mark>  | (2.8%)   |
|                                  | 510.6                | 395.5                | 115.1    |
| Over Grazed                      | (30.4%)              | <mark>(40.7%)</mark> | (16.2%)  |
|                                  | 227.9                | 195.3                | 32.6     |
| Urban Management                 |                      | <mark>(85.7%)</mark> | (14.3%)  |

ATEXAS A&M GRILIFE RESEARCH



### **Calibration Parameters use for Flow**

| Parameter Name | Description                                                                       | Fitted  | Minimum | Maximum |       |
|----------------|-----------------------------------------------------------------------------------|---------|---------|---------|-------|
|                |                                                                                   | Value   | Value   | Value   |       |
| VEPCO.hru      | Plant uptake compensation factor                                                  | 0.745   | 0.5     | 1       |       |
| RCN2.mgt       | Initial SCS runoff curve number for moisture condition II                         | 0.048   | -0.1    | 0.1     |       |
| VALPHA_BF.gw   | Baseflow alpha factor                                                             | 0.067   | 0.005   | 0.1     |       |
| AGW_DELAY.gw   | Groundwater delay                                                                 | 1.25    | -30     | 90      |       |
| AGWQMN.gw      | Threshold depth of water in the shallow aquifer required for return flow to occur | 937.50  | -1000   | 1000    |       |
| VGW_REVAP.gw   | Groundwater revap coefficient                                                     | 0.046   | 0.02    | 0.1     |       |
| ARCHRG_DP.gw   | Deep aquifer percolation fraction                                                 | -0.036  | -0.05   | 0.05    |       |
| AREVAPMN.gw    | Threshold depth of water in the shallow aquifer for revap to occur                | -265.63 | -750    | 750     |       |
| VESCO.hru      | Soil evaporation compensation factor                                              | 0.712   | 0.6     | 0.85    |       |
| RSOL_AWC().sol | Available water capacity of the soil layer                                        | -0.014  | -0.05   | 0.05    |       |
| VCANMX.hru     | Maximum canopy storage                                                            | 4.90    | 0       | 10      |       |
| VSLSOIL.hru    | Slope length for lateral subsurface flow                                          | 17.19   | 0       | 150     |       |
| VLAT_TTIME.hru | Lateral flow travel time                                                          | 0.73    | 0       | 14      |       |
| VALPHA_BF_D.gw | Baseflow alfa factor for deep aquifer                                             | 1.00    | 0       | 1       | TEXAS |
|                |                                                                                   |         |         |         | VGR   |

EE

RESEARCH

R = multiplied by (1+f)

conservation

R = multiplied by (1+fittedvalue), V = replaced, A = added to.

# **Flow Calibration**

| HUC12    |           |      |       |      |
|----------|-----------|------|-------|------|
| Subbasin | USGS Gage | NSE  | PBIAS | KGE  |
| 3        | 07194800  | 0.86 | -3    | 0.84 |
| 8        | 07195000  | 0.86 | -1.9  | 0.92 |
| 16       | 07195800  | 0.63 | 3.8   | 0.8  |
| 25       | 07195430  | 0.88 | 6.3   | 0.92 |
| 27       | 07196900  | 0.78 | -7.6  | 0.81 |
| 17       | 07195865  | 0.81 | 11.7  | 0.69 |
| 19       | 07196000  | 0.83 | -7.6  | 0.87 |
| 25       | 07195500  | 0.89 | 9.8   | 0.88 |
| 35       | 07197000  | 0.86 | -8.5  | 0.85 |
| 37       | 07196090  | 0.92 | -0.4  | 0.96 |
| 39       | 07196500  | 0.88 | 8.5   | 0.87 |
| 43       | 07197360  | 0.77 | -11.7 | 0.83 |





Acceptable Criteria: NSE >= 0.5; KGE >= 0.5; -25 < PBIAS > 25



#### **Water Quality Calibration Results - Overview**



### Calibration Parameters use for Sediment, Phosphorus, and Nitrogen

| Parameter Name        | Description                                                          | Fitted Value | Minimum Value | Maximum Value |
|-----------------------|----------------------------------------------------------------------|--------------|---------------|---------------|
| vCH_COV1.rte          | Channel erodibility factor                                           | 0.32         | 0.3           | 0.7           |
| vCH_COV2.rte          | Channel cover factor                                                 | 0.015        | 0.005         | 0.2           |
| vSPCON.bsn            | Maximum amount of sediment that can be reentrained                   | 0.003        | 0.0001        | 0.01          |
| vSPEXP.bsn            | Sediment reentrained in channel sediment routing                     | 1.589        | 1.0           | 2.0           |
| vADJ_PKR.bsn          | Peak rate adjustment factor for sediment routing in the subbasin     | 0.727        | 0.5           | 2.0           |
| vPRF_BSN.bsn          | Peak rate adjustment factor for sediment routing in the main channel | 0.635        | 0             | 2.0           |
| vP_UPDIS.bsn          | Phosphorus uptake distribution parameter                             | 77.292       | 20            | 100           |
| vPPERCO.bsn           | Phosphorus percolation coefficient                                   | 13.28        | 10            | 17.5          |
| vPHOSKD.bsn           | Phosphorus soil partitioning coefficient                             | 179.69       | 120           | 200           |
| vPSP.bsn              | Phosphorus sorption coefficient                                      | 0.6          | 0.01          | 0.7           |
| vERORGP.hru (Pasture) | Organic P enrichment ratio                                           | 0.32         | 0             | 5             |
| vCDN.bsn              | Denitrification exponential rate coefficient                         | 1.1104       | 1.0           | 1.2           |
| VCMN.bsn              | Rate factor for humus mineralization of active organic N             | 0.0025       | 0.001         | 0.003         |
| vNPERCO.bsn           | Nitrogen percolation coefficient                                     | 0.9896       | 0             | 1.0           |
| VRSDCO.bsn            | Residue decomposition coefficient                                    | 0.0748       | 0.02          | 0.1           |
| VSDNCO.bsn            | Denitrification threshold water content                              | 0.929        | 0.6           | 1.0           |
| VN_UPDIS.bsn          | Nitrogen uptake distribution parameter                               | 94.792       | 0             | 100           |

R = multiplied by (1+fittedvalue), V = replaced, A = added to.

## **Sediment Calibration**

| HUC12    |                       |        |         |        |
|----------|-----------------------|--------|---------|--------|
| Subbasin | USGS Gage/Combined    | NSE    | PBIAS   | KGE    |
| 3        | 07194800              | 0.32   | -149.1  | -0.54  |
| 8        | 07195000-ARK0041      | 0.12   | 58.6    | -0.11  |
| 16       | 07195800 (FC12)       | 0.16   | -13.1   | 0.06   |
| 25       | <mark>07195430</mark> | 0.53   | -50     | 0.35   |
| 27       | 07196900-ARK0007A     | -79.93 | -1555.3 | -15.93 |
| 17       | 07195865-ARK0005      | -0.53  | -219    | -1.27  |
| 19       | 07196000              | 0.29   | -127.6  | -0.33  |
| 25       | 07195500              | 0.54   | -45.4   | 0.38   |
| 35       | 07197000              | 0.37   | -35.1   | 0.26   |
| 37       | 07196090              | 0.53   | -8.5    | 0.48   |
| 39       | 07196500              | 0.55   | 4.2     | 0.47   |
| 43       | 07197360              | -0.96  | -210.9  | -1.2   |

Red subbasin numbers indicate observations from LOADEST might not be acceptable

Acceptable Criteria: NSE >= 0.5; KGE >= 0.5; -55 < PBIAS > 55









▲ 95PPU ∧ Observed ∧ Best estimation

# **Nitrogen Calibration**

|          |                       | NOx  |       | TN   |       |        |       |
|----------|-----------------------|------|-------|------|-------|--------|-------|
| HUC12    | USGS                  |      |       |      |       |        |       |
| Subbasin | Gage/Combined         | NSE  | PBIAS | KGE  | NSE   | PBIAS  | KGE   |
| 3        | 07194800              | 0.22 | -11   | 0.59 | -2.39 | -122.7 | -0.67 |
| 8        | 07195000-ARK0041      |      |       |      | 0.52  | 34     | 0.54  |
| 16       | 07195800 (FC12)       |      |       |      | 0.34  | -0.1   | 0.68  |
| 25       | 07195430              | 0.4  | 14.6  | 0.68 | 0.73  | -3.8   | 0.86  |
| 27       | 07196900-ARK0007A     |      |       |      | 0.61  | -3.6   | 0.6   |
| 17       | 07195865-ARK0005      |      |       |      | 0.38  | 34.9   | 0.47  |
| 19       | 07196000              | 0.53 | 21.1  | 0.66 | 0.72  | -0.7   | 0.81  |
| 25       | 07195500              |      |       |      | 0.75  | -0.2   | 0.87  |
| 35       | 07197000              | 0.56 | 13.8  | 0.65 | 0.74  | -5.9   | 0.74  |
| 37       | 07196090              | 0.56 | 0.7   | 0.79 | 0.78  | -9.8   | 0.85  |
| 39       | <mark>07196500</mark> | 0.58 | 5.5   | 0.73 | 0.76  | -4.7   | 0.83  |
| 43       | 07197360              | 0.37 | -3.1  | 0.69 | 0.52  | -33.7  | 0.6   |

#### Acceptable Criteria: NSE >= 0.5; KGE >= 0.5; -70 < PBIAS > 70









# **Phosphorus Calibration**

|          |                       | ОР    |        | ТР    |       |        |       |
|----------|-----------------------|-------|--------|-------|-------|--------|-------|
| HUC12    | USGS                  |       |        |       |       |        |       |
| Subbasin | Gage/Combined         | NSE   | PBIAS  | KGE   | NSE   | PBIAS  | KGE   |
| 3        | 07194800              | 0.79  | -49.5  | 0.48  | 0.4   | -6.9   | 0.29  |
| 8        | 07195000-ARK0041      |       |        |       | 0.35  | 6      | 0.42  |
| 16       | 07195800 (FC12)       |       |        |       | -0.1  | -221   | -1.23 |
| 25       | 07195430              | 0.1   | -1.6   | 0.51  | -0.41 | -130.9 | -0.41 |
| 27       | 07196900-ARK0007A     |       |        |       | -1.06 | -189.1 | -1.03 |
| 17       | 07195865-ARK0005      |       |        |       | 0.1   | 56.7   | -0.06 |
| 19       | 07196000              | 0.54  | 40.1   | 0.37  | 0.47  | -48.1  | 0.39  |
| 25       | 07195500              |       |        |       | -0.25 | -118   | -0.28 |
| 35       | 07197000              | 0.66  | -73.1  | 0.25  | 0.38  | -0.8   | 0.29  |
| 37       | 07196090              | 0.78  | 23.7   | 0.59  | 0.61  | -45.5  | 0.38  |
| 39       | <mark>07196500</mark> | 0.49  | 46     | 0.29  | 0.55  | -22.5  | 0.46  |
| 43       | 07197360              | -4.67 | -175.9 | -1.49 | 0.41  | -48.4  | 0.37  |

#### Acceptable Criteria:

NSE >= 0.5; KGE >= 0.5; -70 < PBIAS > 70



TEXAS A&M

RESEARCH

### Loading by Land Use from Calibrated Model

|              | Iotal N (Kg) | Iotal P (Kg) | Sediment (tonnes) |
|--------------|--------------|--------------|-------------------|
| All Land     | 4,111,108    | 407,744      | 484,749           |
| Range Land   | 55,085       | 2,955        | 4,841             |
| (2%)         | (1.3%)       | (0.7%)       | (1.0%)            |
| Forest Land  | 636,171      | 25,555       | 18,517            |
| (47%)        | (15.5%)      | (6.3%)       | (3.8%)            |
| Pasture Land | 3,219,955    | 362,169      | 385,698           |
| (43%)        | (78.3%)      | (88.8%)      | (79.6%)           |
| Urban Land   | 161,349      | 15,072       | 31,638            |
| (6%)         | (3.9%)       | (3.7%)       | (6.5%)            |
| Other Land   | 38,548       | 1,994        | 44,056            |
| (2%)         | (0.9%)       | (0.5%)       | (9.1%)            |

|                | Percent    | Total N           | Total P           | Sediment          |
|----------------|------------|-------------------|-------------------|-------------------|
|                | of Pasture | (kg/ha)           | (kg/ha)           | (t/ha)            |
| Average of All |            |                   |                   |                   |
| Pasture Land   |            | 18.6              | 2.1               | 2.24              |
| Dairy Farms    | 1.1%       | 35.5              | <mark>11.3</mark> | 0.22              |
| Hog Farms      | 1.7%       | 34.5              | <mark>14.2</mark> | 0.90              |
| Well Managed   | 57.8%      | 14.0              | 1.3               | <mark>1.79</mark> |
| Litter         |            |                   |                   |                   |
| Well Managed   | 5.8%       | <mark>38.2</mark> | <mark>3.8</mark>  | 0.22              |
| Litter         |            |                   |                   |                   |
| Over Grazed    | 4.1%       | <mark>57.8</mark> | <mark>5.4</mark>  | 1.57              |
| Over Grazed    | 29.5%      | 16.8              | 1.7               | <mark>3.59</mark> |

Sana Conservation Con





# **Load Reduction Strategies**







# Load Reduction by Strategy

|                              | SYLD (t/ha)         | OP (kg/ha)          | TP (kg/ha)          | NOx (kg/ha)         | TN (kg/ha)          |
|------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Baseline Loading             | 57.9                | 41.7                | 48.7                | 299.8               | 491.8               |
| Reduced Litter               | 2.5%                | -10.7%              | -9.1%               | -3.4%               | -1.7%               |
| Reduced Litter Well Managed  | <mark>-21.9%</mark> | <mark>-11.3%</mark> | <mark>-11.8%</mark> | <mark>-5.8%</mark>  | <mark>-10.5%</mark> |
| No Litter                    | 9.6%                | -17.3%              | -14.7%              | -23.5%              | -13.6%              |
| No Litter Well Managed       | -13.3%              | -19.7%              | -18.5%              | -24.2%              | -19.9%              |
| No Litter No Grazing         | <mark>-65.8%</mark> | <mark>-30.3%</mark> | <mark>-31.5%</mark> | <mark>-33.8%</mark> | <mark>-48.0%</mark> |
| 15m Filter Strip Over Grazed | <mark>-31.5%</mark> | <mark>-25.6%</mark> | <mark>-24.9%</mark> | <mark>-20.5%</mark> | <mark>-25.0%</mark> |
| 15m Filter Strip All Pasture | <mark>-63.3%</mark> | <mark>-64.2%</mark> | <mark>-60.8%</mark> | <mark>-51.9%</mark> | <mark>-58.9%</mark> |

> No litter application is an extreme BMP that is not realistic to implement

> No grazing is an extreme BMP that is not realistic to implement





## **Reduced Litter and Well Managed Grazing**

Reduced Litter, all Well Managed IRB Subbasin Output - Percent Change from Baseline (2000-2020)



## **Continuation of Work**

- More targeted scenario development
- Examine influence of point source contributions
- Evaluate impacts of unpaved roads in loadings
- Downscale models if necessary for target subbasins
- Analysis of filter strips during high flow and base flow
- Incorporate an economic model to valuate strategies







# hawqs.tamu.edu





ok.hawqs.tamu.edu



# **Questions?** Comments?







Texas A&M