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Calibration and validation
SWAT-CUP � SUFI-2 algorithm 
Sensitivity analysis (500 iterations)
Objetive function: KGE
1,000 iterations: 500 + 500
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PERFORMANCE INDICATORSPERFORMANCE INDICATORS

PRED

Continuous Ranked Probability Skill Score
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RAW FORECASTS NEED
BIAS CORRECTION
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Precipitation bias:  Generally, the maps show more blue
tones, indicating an underestimation of precipitation.
Temperature Bias:   (Tmax)  was generally
underestimated. The bias is less pronounced for minimum
temperature (Tmin), as shown by the softer colors on the
heatmap.

Bias of Forecasts
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LSTM Training: 
Leave-one-out cross validation 
For each month and each of the 40 sub-basins, we
trained an LSTM network. 480 LSTM models for each
variable = 1440 LSTM models

Monthly correction factor of the bias was calculated and
applied to monthly  data

Precipitation: The bias correction brought values
closer to 1 in most cases, indicating improved
accuracy.
Temperature: The correction reduced the bias,
bringing values closer to zero. However, Tmin
showed less improvement, with some sub-basins
and lead times still having notable bias.

Bias of corrected
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Bias correction proved effective, as evidenced by positive
CRPSS values, indicating an enhancement in meteorological
forecast accuracy following bias correction.

Performance raw
vs. corrected
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precipitation being less predictable, machine learning-based
correction achieved significant improvements over
climatology.
Challenges in Minimum Temperature Forecasting: Minimum
temperature forecasts exhibited the poorest correction in
specific sub-basins during the first month of winter, yet
performance was adequate for early lead times in other
seasons.

Performance obs-
clim vs. corr
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Need of a more robust forecasting method
Seasonal forecast represent a promising option -->
Bias Correction
LSTM models demonstrate to effectively reduce bias
The developed SWAT model of the Upper Tagus
River Basin shows satisactory results for its
application
Next steps: Validate the proposed methodology
forcing the SWAT model with corrected seasonal
forecast data




