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Tree Plantation Impacts
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Maximizing water yield with indigenous
non-forest vegetation: a New Zealand
perspective

Alan F Mark” and Katharine JM Dickinson

Provision of clean freshwater is an essential ecosystem service that is under increasing pressure worldwide from a
variety of conflicting demands. Water yields differ in relation to land-cover type. Successful resource management
therefore requires accurate information on yields from alternative vegetation types to adequately address concerns
regarding water production. Of particular im portance are upper watersheds/catchments, regardless of where water
is extracted. Research in New Zealand has shown that, when in good condition, indigenous tall tussock grasslands
can maxjmize water yield relative to other vegetation cover types. A long-term hydrological paired-catchment
study revealed reductions (up to 41% after 22 years) in water yielded annually from an afforested catchment rela-
tive to adjacent indigenous grassland. Furthermore, a stable isotope assessment showed that water from fog may
substantially contribute to yvield in upland tussock grasslands. The tall tussock life-form and its leaf anatomy and
physiology, which minimize transpiration loss, appear to be the differentiating factors. Thus, maintaining domi-
nance of such cover is important for water production, especially in upland catchments. Ecological analogues and
integrated land-use planning are discussed in the context of this essential ecosystem service. Water management
programs in other countries are reviewed and that of South Africa is commended as a model.
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Depth to hydrogeological basement map,

2019

Info History

Date Added
+ 27 Jan 2020

This data set provides an update of New Zealand's depth to hydrogeological basement
map. Depth to hydrogeological basement can be loosely defined as the ‘base of aquifers’; or
more strictly as ‘the depth to where primary porosity and permeability of geological
material is low enough such that flued volumes and flow rates can be considered negligible’.
For more detail on the process and methods, see Westerhoff et al. (2019). New Zealand
groundwater atlas: depth fo hydrogeological basement. Lower Hutt (NZ): GNS Science. 19 p.
Consultancy Report 2019/140
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Variations in soil data sets

Local Soil Databases
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Input data: SWAT+gwflow

Data Source
Topography | University of Otago
SWAT+ inPUt data > Land use Landcare Research
Landcare Research
Soil Global websites (FAO,
ISRIC)
Climate HBRC & NIWA
Data Source
gwflow input data > Aquifer thickness GNS Science
Geologic unit GNS Science




Soil in SWAT(+)

Percolation

—At

Wpercly = Wiy, .(1—exp[
perc,ly y,excess TTperc

Transpiration

AWC: Available Water
AWC = FC — WP |Capacity
FC: Water content at
field Capacity

W: percolation (mm)
SAle — FCly SW: soil water content

TTperC = TT: travel time for
percolation (hr)

WP: Water content at

WPly = 04 Pb wilting point

Pp: soil bulk density

Saturated hydraulic conductivity (mm/hr)

Clay content (%)
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Gaps/Questions: soil databases

1) Impact of different soil databases on streamflow estimation within a

catchment, with identical input data except for the soil.

2) Key parameters or parameter groups contributing to prediction

uncertainty reduction [and by how much?].
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Methodology: Discretisation

Mohaka catchment
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a) DEM

High : 1707

Low: 0 [ | Mohaka catchment
A Streamflow stations

@ Weather stations
b) Land cover in study area ¢) Slope in study area

"Land cover [ Agriculture

l:l Evergreen forest - Water )
- Pine - Pasture - 18.46 - 35.47

B Grosstana NI Barren W 35.47 - 73.54
Area: 2,400 km?

Average rainfall: 1620 mm

Average slope: 28 degree




Methodology: Techniques/tools
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I1. Contribution of parameters (groups) to » Linear Analysis:
prediCtiOIl uncertainty first-order-second moment (FOSM analysis)




Performance evaluation: SWAT+gwflow

Daily performance statistics Monthly performance statistics
Soil Soil
PBIAS R2 NSE PBIAS R2
Database Database
FAO -0.58 -86.4 0.34 -1.26 -86.3 0.71
ISRIC -0.54 -92.9 0.31 ISRIC -1.62 -02.8 0.63

S-map 0.35 17.6 0.61 0.46 17.6 0.82

FSL 0.45 -6.9 0.67 FSL 0.56 -6.8 0.81




wate Y b a I ance Local soil databases A A Global soil databases

| componew | smp | s | imc | mo

Precipitation 1657 1667 1658 1616

Catchment inputs
GW boundary inflow 146 169 -400 122 I

Surface ET

Surface runoff

Lateral soil flow

Catchment outputs GW discharge to streams 206 0 0 0

Stream seepage to GW -71495 -268000 -9632 -30088
Saturation excess flow 70580 266950 6244 25592
GW ET 0.03 0.11 0.00 0.00
Recharge 2680 3640 31705 9783 I
Pumping irrigation 0 0 0 0
Internal flows
Surface water irrigation 0 0 0 0

GW transfer to soil 3496 4883 36990 14394



Linear analysis (FOSM analysis)

Jacobian or sensitivity matrix

Z: the action of a model on its
parameters (Jacobian or sensitivity

h - ZI{ +E matrix)

h: observation of the system states and

fluxes
€: observation noise/errors
g
s=vyk
Site L,
Measurements of S i Ug i v C(k)v

system state

=3
o.” = y'C'(k)y

=

P(k|h) o P(h|k) P(k)

O'SZ: prior variance of prediction s

O'Srz: posterior variance of prediction s

posterior probability likelihood function prior probability
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Linear uncertainty analysis (Low flows)
Low FLOW
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Linear uncertainty analysis (High flows)

High FLOW
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Linear uncertainty analysis (ET)

Evapotranspiration
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Conclusion Thank you!

1) Local soil databases outperformed global soil databases in estimating the

streamflow at the outlet of the catchment.

2) Contribution to prediction uncertainty reduction:

Low flow simulation = groundwater-related parameters (maintaining the baseflow during

low flow conditions)

High flow simulation =» Soil parameters and CN (critical parameters in runoff and

infiltration rates)

Evapotranspiration = Biophysical parameters (vegetation dynamics)




Global sensitivity analysis

Morris Screening (Elementary Effects)

EEy = (i + ‘ﬁ;’“"xp} ~F®)  Elementary Effect

1 : nj =t [ [J [J [
pi = EZ |EE:(j) Sensitivity index
j=1

1 1y 2
= z EE:(j) — EZ EE,-U]‘ Non-linearity/interaction index




Global sensitivity results

FSL
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Global sensitivity results

1) Groundwater flow/properties/processes (GWFLOW) control
the streamflow =» improving the GW algorithm will be

beneficial

2) Model outputs in GLOBAL soil databases showed MUCH
higher sensitivities to parameter changes (sen_mean)

3) Parameters in global soil databases showed MUCH higher
non-linearity and/or interactions with each other (sen_ std)

Large differences in sensitivity Ultimate goal of a model:
indices = higher uncertainty in Make a prediction!
model predictions 2=

lrn.portance of choosing the right Parameter contribution to prediction
soil database uncertainty???
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