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Harmful algal blooms prominent issue in Laurentian Great Lakes
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A Lake Erie Harmful Algal Bloom (HAB) Primer

Harmful AIgaI Blooms (HABS) more severe since 1995
Blooms largely caused by Phosphorus (P), DRP doubled since 1995
Maumee River contributes 50% of Phosphorus & drives Lake Erie HABs

Maumee River watershed >75% agriculture



A Lake Erie Harmful Algal Bloom (HAB) Primer

€he New York Times

2014 Toledo water crisis

* Half a million people
without potable water
for 3-days

TIap Water Ban for Toledo Residents

Blooms largely caused b
Maumee River contributes 50%;




Binational agreement — phosphorus loading targets for Lake Erie

* New targets based on lake modeling are more nuanced
* Reaching targets requires agricultural conservation

OLD TARGET
1970s-2015; Annual All Lake Erie
G re at L ake s TP Load 11,000 MT

Water Qlj;lhty NEW TARGETS

2016-present; Maumee Western
Agre eme nt March-July River Lake Erie
DRP Load* 186 MT  40% of 2008
TP Load* 860 MT  40% of 2008
DRP Concentration** 0.05 mg/L
TP Concentration** 0.23 mg/L

*to be met 9 years out of 10 ** flow weighted mean

P = Phosphorus
TP = Total Phosphorus
DRP = Dissolved Reactive Phosphorus




Multi-Institutional SWAT modeling efforts

Long-term collaboration: 2015-present

Can these targets be achieved?
What practices & adoption rates?
Can ag. production be maintained?
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Multi-model: A stakeholder-engaged process

» Stakeholder group featuring ~20 individuals representing
~17 environmental, governmental, and farming groups
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Five SWAT models predict effectiveness of reaching loading targets

Random  Targeted

TN:TP (molar)
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Scenario Number and Description

Martin et al. (2021) “Evaluating management options to reduce Lake Erie algal blooms
using an ensemble of watershed models,” Journal of Environmental Management




Multi-model- critical source areas

[1 1 Model

[1 2 Models

* Greater certainty for some model outputs

[ 3 Models

* Individual models can be used to identify CSAs,

B 4 Models

though multi-model approach is advantageous

B 5 Models

TSS

TP

DRP

S

(77

*.U‘ "‘bﬁ\

Ve
5

7
NNAY )
N/ &

’ "

>

25 Kilometers

Evenson et al. (2021) “Uncertainty in critical source area predictions from watershed-scale

hydrologic models,” Journal of Environmental Management




Multi-model— Climate resilience

* 6 climate models (RCP 8.5) + 5 SWAT models

Variation in Maumee River flow/loads explained by
climate model vs. watershed model

100 100
MW hydrology model [%] 80 80
. 60 60
M climate model [%] 40 40
20
residual [%] 0 28
Discharge Total nitrogen Total Dissolved

phosphorus phosphorus
* No clear signal of future change in hydrology, water quality

e Consistency in model ensemble that increased conservation scenario will be
effective in reducing nutrients — variation in effectiveness uncertain

1. Kujawa et al. (2020) “The hydrologic model as a source of nutrient loading uncertainty in a future climate” Science of the Total Environment
2. Kujawa et al. (2022) “Using a Multi-Institutional Ensemble of Watershed Models to Assess Agricultural Conservation Effectiveness in a Future
Climate” Journal of the American Water Resources Association




Multi-model key takeaways

Generalization and Inputs Layers

* Multi-model ensemble assessed
GLWQA nutrient targets

* Targeting most effective
* DRP targets difficult to meet

Remote sensing of watershed, University of Toledo

* Significant opportunity to reduce |
uncertainty and improve trust in
models

* management assumptions
* physical process representation

Edge-of-field (EOF) monitoring, USDA



Next generation version of the Maumee SWAT model
Field-scale boundaries

* Maumee watershed draining to western Lake Erie
e Spatial unit: Hydrologic response unit (HRU) approximate fields

Legend

—— Waterways
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Apostel et al. (2021) “Simulating internal watershed processes using multiple SWAT
models,” Science of The Total Environment




Bridging gap between multi-model scenarios and targeting approach

Legacy P fields — historically mismanaged fields with significantly
elevated P soil concentrations (STP > 100 ppm Melich-IlI STP)

2. Target fields based on high P loss and
conservation identity- equally effective

1. Disproportionate losses from
legacy fields simulated in SWAT

HRU: High soil P, high P fertilizer

e 15% greater P loss

High STP (200% of homogenized STP)
e 20% greater DRP loss

 35% greater TP loss (channel)
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Arrueta et al. (2023). Simulating the Effects of Behavioral and Landscape Heterogeneity on
Nonpoint Source Pollution. Journal of the American Water Resources Association (JAWRA).

Kast et al. (2020) “Evaluating the efficacy of targeting options for conservation

Kast et al. (2021) “Source contribution to phosphorus loads from the Maumee River
practice adoption on watershed-scale phosphorus reductions” Water Research

watershed to Lake Erie” Journal of Environmental Management




Monitoring and simulating legacy P fields for better targeting of conservation

P _l____ [ :I\

N

Project practices:

¥ Objective 1:
W Quantify loads, reductions @ 10 elevated-P

Nzieie

CEEERRRRERS fields
s L
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Monitorin W Socio-economics of Partnership

W Models demonstrate scalability
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Brooker et al. (2021) “A Public-Private Partnership to Locate Fields for Implementation and Monitoring of Best
Management Practices to Treat Legacy Phosphorus” Frontiers in Sustainable Food Systems




Continued improvements in baseline model and scenario analysis for state of Ohio

Obj.2. Maumee SWAT model Obj.3. H20hio program water quality

benefits evaluation

Obj.1. Remotely-sensing mapping of
conservation practices

Buffer Strips

Current/planned H2Ohio Practices

9i®) 3 || Reducing P

Targeted | " \Wetlands

Priorities

Michigan

h2.ohio.gov

Heat map of ‘ SeptiCS
BMPIndex Resulls S
N - www.Go‘:I::::C:;ngov % Lead
Achird F¥ % contamination
Mapped BMP representation ] [ Improved SWAT model Future H2Ohio Practices & impacts ]

Ongoing
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Multi-model calibration

The performance of the five SWAT models were evaluated over the entire 2005-2014 period and were compared to standards for satisfactory performance established
by Moriasi et al. (2007)! for percent bias (PBIAS) and Nash-Sutcliffe Efficiency (NSE).

Satisfactory Performance Multi-Model Ohio State LimnoTech  University of Heidelberg University of
Range' Average University Michigan University Toledo
PBIAS Discharge +/- 25 2.2 -3 11 1 2 0.1
(%) TP +/-70 2.7 19 -13 1 -7 -13
DRP +/-70 5 —4 —-15 7 7 32
TN +/-70 -11 -11 —24 —4 -3 -12
NSE Discharge >0.50 0.89 0.99 0.91 0.94 0.88 0.83
TP 0.70 0.71 0.77 0.61 0.73 0.66
DRP 0.67 0.73 0.67 0.69 0.77 0.50

TN 0.58 0.64 0.59 0.77 0.74 0.17
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Phosphorus delivery to Lake Erie

Lake
Huron
Huron-Erie Corridor Total 2259 )
Atmospheric Lake Ontario
Lake Huron 1% :
15% % East Basin Total 1060
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Informing Lake Erie Agriculture
Nutrient Management via
Scenario Evaluation
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Scavia et al., 2017. Multiple models guide strategies for agricultural nutrient reductions.
Frontiers in Ecology and the Environment.



Projects fueled by stakeholder process:
Soil health & water quality

* Cover crops, no-till, and a suite of

modified soil descriptive A.Q B. DRP C.TP D.NO,-N E. TN
parameters to depict soil health SH-P | | |
practice on soil properties COVC&S}?‘:}?
AWC
* Improving soil health reduced N BIOMIX
and total P loss but increased c1:-2
dissolve P loss oC
OV-N
* Need for additional observations on USLE_P;("
soil health to further verify results USLE-P | | | |
and guide future development 5 0 00 01 0250025  -25 00 -5 0

A (mm yr_]) A (kg ha ' yr_l) A (kg ha ' yr_l) A (kg ha ' yr_l) A (kg ha ' yr_l)

Evenson et al. (2022) “Representing soil health practice effects on soil properties and nutrient
loss in a watershed-scale hydrologic model,” Journal of Environmental Quality




Physical and social factors for targeting conservation
Perceived vs. actual (simulated) nutrient loss

* Use surveys of farmers to identify perceived

risk vs. actual risk of nutrient loss as simulated Relative
. "overprediction”
in SWAT of risk

-

=
i
Findings: g:.' Relatively
. . . o "accurate"
* Farmers with higher nutrient loss do not s sk’ nerception
consistently report a higher likelihood of iz
negative consequences from nutrient loss on Relative
. "underprediction”
their farm of risk

e Characteristics of the individual are more
important in determining whether farmers are
likely to “overpredict” or “underpredict” risk

Nutrient loss, kg/ha

Published: Schwab et al. (2021) “Assessing the Accuracy of Farmers’ Nutrient Loss Risk
Perceptions” Environmental Management




Multi-model: Climate and agricultural conservation
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Kujawa et al. (2022) “Using a Multi-Institutional Ensemble of Watershed Models to Assess Agricultural
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Projects fueled by stakeholder process:
Nutrient source contributions

* Improved model for Percent reduction in P loading

manure application; e
uniform soil P in

Low soil P

* Similar delivery ratios |
T -40%
m 200% 175% 150% 125% Baseli 75% 50% 25% Unifi
fo r a n u re a S fe rtl I I Ze r Initializned Im’tiali;ed Initiali;ed Initiali::ed ]ni;tlisaelilzueedl11iriali;ed lnitiali;ed [nitialinzed UIJ;;.I]G lSlgil

Soil P Soil P Soil P Soil P Soil P Soil P Soil P Soil P P

cropland
e Sensitivity analysis: soil I I
P source of P load
_ High soil P
* Long-term soil P

reductions will help!

-20%

mTP
DRP

Published: Kast et al. (2021) “Source contribution to phosphorus loads from the Maumee

River watershed to Lake Erie” Journal of Environmental Management




Projects fueled by stakeholder process:
Legacy phosphorus in soils

* Gauging the level of disproportionality in phosphorus emitters

nsity
(=}

P fertilizer distribution Difference in share of DRP and TP loads produced by 25%

highest-emitting fields compared to baseline simulation
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Thesis: Lourdes Arrueta Antequera (2020) “Simulating the Effects of Behavioral and
Landscape Heterogeneity on Non-point Source Pollution”




Targeting: Finding fields generating greater loads
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Five SWAT models predict effectiveness of reaching loading targets (1)
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Published: Scavia et al. (2017) “Multiple models guide strategies for agricultural nutrient
reductions,” Frontiers in Ecology and the Environment




Five SWAT models predict effectiveness of reaching loading targets (2)

Second iteration:
+ Improved manure
sources

+ Investigate
targets more
closely to Annex 4

UNIVERSITY OF . o [ciie
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High-resolution watershed modeling

Soil Test
Phosphorus

Remote
sensing data

e Crop rotations

e Cover crops

* Tillage practices
e Buffer strips

County level STP
distributions used
to apply a
heterogeneous
representation of
soil P values

-

A LAl ‘
PRINTA

2.

Field-scale SWAT Model

e Locations of permitted
and unpermitted
facilities

« Kast et al 2020
allocations

 Applied according to STP
\_ values and crop needs

J

Maumee River Watershed

Inorganic
Fertilizer

» County level rates
of N and P scaled to
meet plant needs

* Applied to field
where manure does
not meet plant

\¥ needs

Additional linked
practices

* Subsurface
application

e Tile drainage-
spacing

e Wetland
locations




Addressing heterogeneity in P sources — legacy contributions

40%

20%

0%

-20%

-40%

Percent reduction in P loading

Low soil P

aTP

DRP
High soil P
200% 175% 150% 125%  Baseline 75% 50% 25% Uniform
Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Urban Soil
Soil P Soil P Soil P Soil P Soil P Soil P Soil P Soil P P

Change in DRP Loads
from the Baseline Scenario (%)

Published: Kast et al. (2021) “Source
contribution to phosphorus loads from the

Maumee River watershed to Lake Erie” Journal

of Environmental Management

Legacy P fields — historically mismanaged fields with
significantly elevated P soil concentrations (STP > 100
ppm Melich-Ill STP)

P loss from HRUs

15% °% Fertilizer rate heterogeneity—
random

STP heterogeneity—random

10%1

- Fertilizer + STP heterogeneity —
random

N
5=

Low risk (High STP, low fertilizer)

3% 3%

High risk (High STP, high fertilizer)

0%

2010

Published: Arrueta et al. (2023). Simulating the Effects
of Behavioral and Landscape Heterogeneity on
Nonpoint Source Pollution. Journal of the American
Water Resources Association (JAWRA).




Social factors for targeting conservation—
Targeting based on conservation identity

-
Greatest
L r
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Loading Rates \
-5% | a)total phosphorus
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o Targeting Pathway
. : : P Loading Rales
Malllm‘:c Rl"cf G’ffﬂtﬂst Cﬂmblﬂﬂ‘d . — Consenvalion |dantites
Watershed SWAT Model Phosphorus Combned P Loading Rates + Conservation Identities
Loading Rates and 40% - : : . 3 . . . : . :
Faianss 0% 10% 20% 30% 40% 50% 60% 70% B80% 90% 100%
C " Percent of Agricultural HRUs with Practice
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Published: Kast et al. (2020) “Evaluating the efficacy of targeting options for conservation
practice adoption on watershed-scale phosphorus reductions” Water Research
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