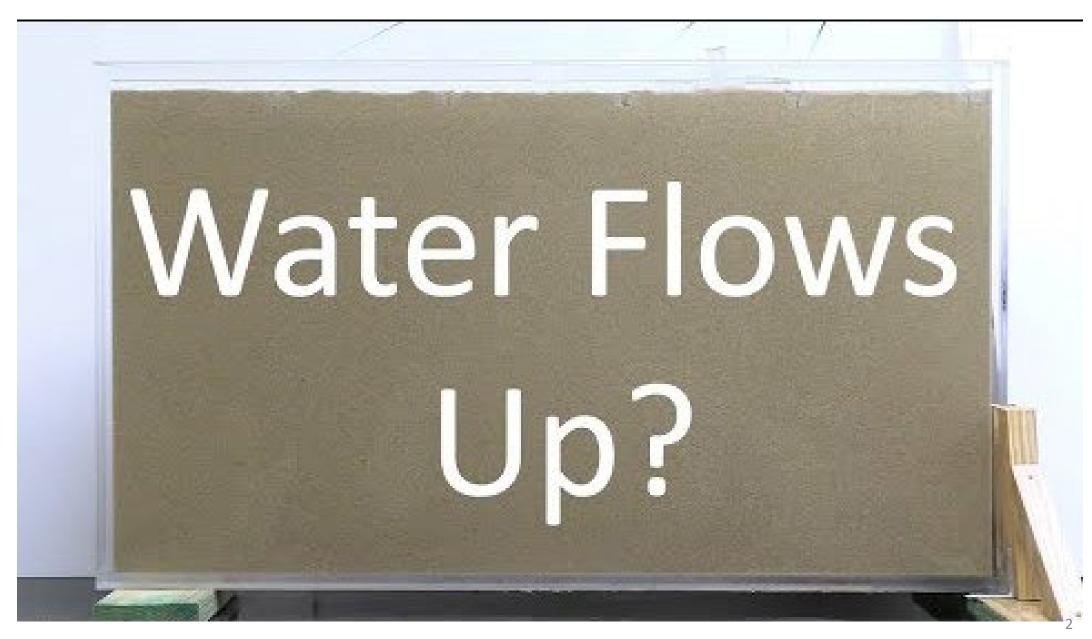
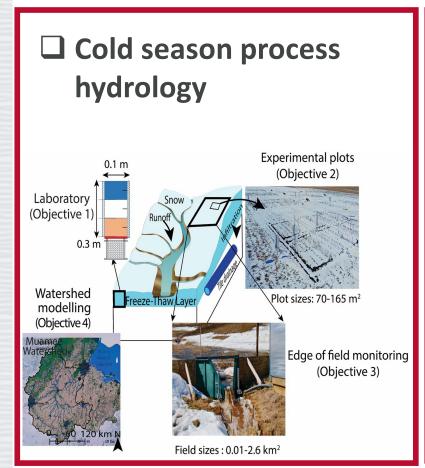
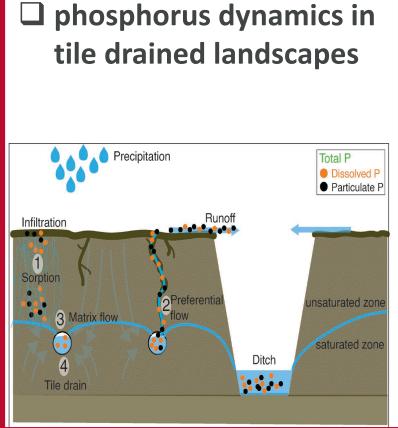
EST. 1870


Water and phosphorus Dynamics predictions in subsurface (tile) drained watersheds

Vinayak Shedekar, Margaret Kalcic, Fariba Babaeian, Lourdes Arrueta, Asmita Murumkar, Kevin King, and more...


Shedekar.1@osu.edu



How does water move towards drains?

Current Watershed Modeling Projects

Team: The Ohio State University, University of Wisconsin-Madison, USDA-ARS (Columbus), USDA-ARS (National Soil

Erosion Research Laboratory

Project Teams & Collaborators

- Vinayak Shedekar
- Michael Brooker
- Fariba Babaeian
- Asmita Murumkar
- Jay Martin
- Grey Evenson
- Sushant Mehan

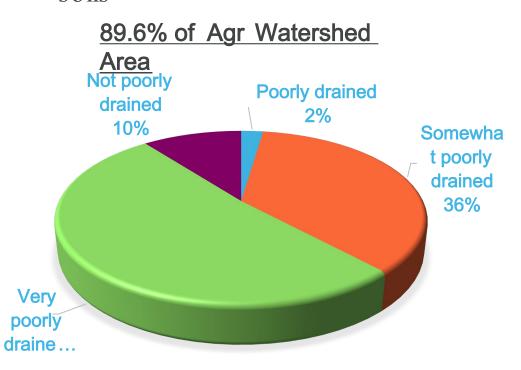
- Anita Thompson
- Margaret Kalcic
- Jaya Muehlman
- Francisco Arriaga
- Lourdes Arrueta
- Shyanee Lee
- Laxmi Prasad

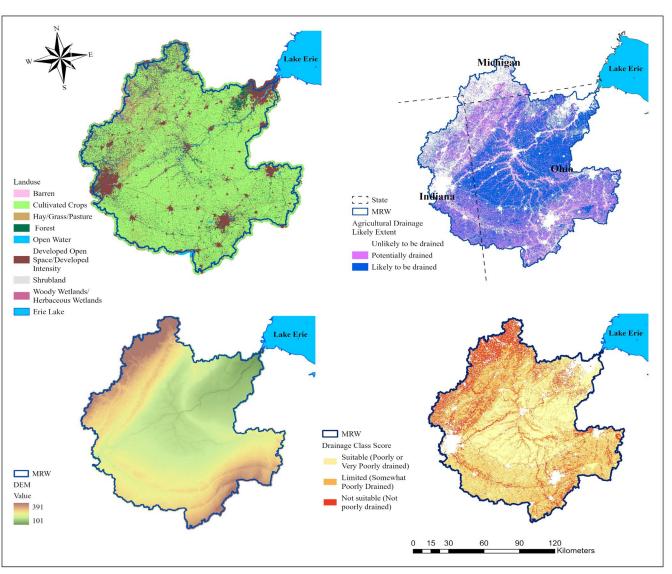
- Soil Drainage Research Unit, Columbus OH
- National Soil Erosion
 Research Laboratory
- Kevin King & Will Osterholz
- Chad Penn & Mark Williams

Acknowledgments

Maumee Watershed Modeling Stakeholder **Advisory group**

United States Department of Agriculture National Institute of Food and Agriculture




Maumee River Watershed(MRW)

CFAES

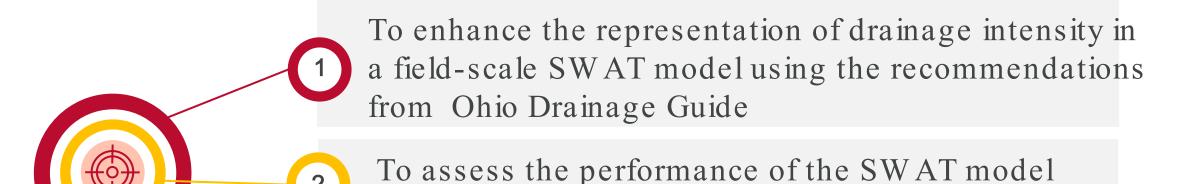
- ☐ 76% of the MRW land use is row-crop agriculture
- ☐ Characterized by very poorly drained soils

Of Agr Watershed Area with subsurface drainage systems:

compare measurable for the principle of the compared of the co

Drainage spacing refinements in SWAT model – effects on field - and watershed -scale hydrology & nutrient loss

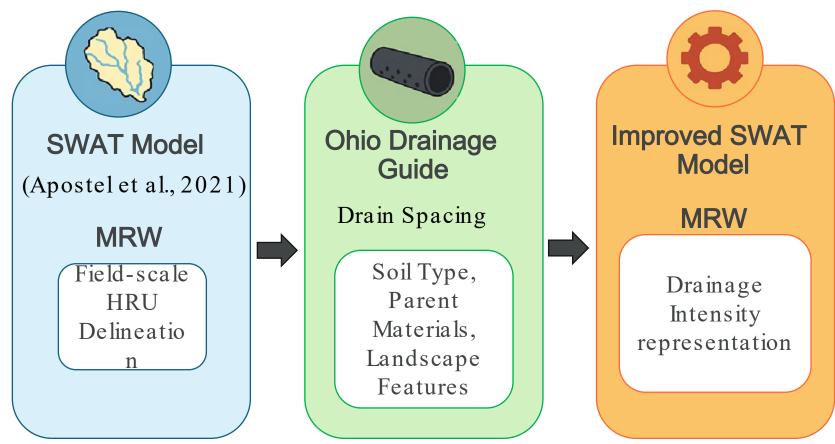
Fariba Babaeian, Asmita Murumkar, Margaret Kalcic, Kevin King, Ahmed Awad, and Vinayak Shedekar


Department of Food, Agricultural, and Biological Engineering babaeian.2@osu.edu

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

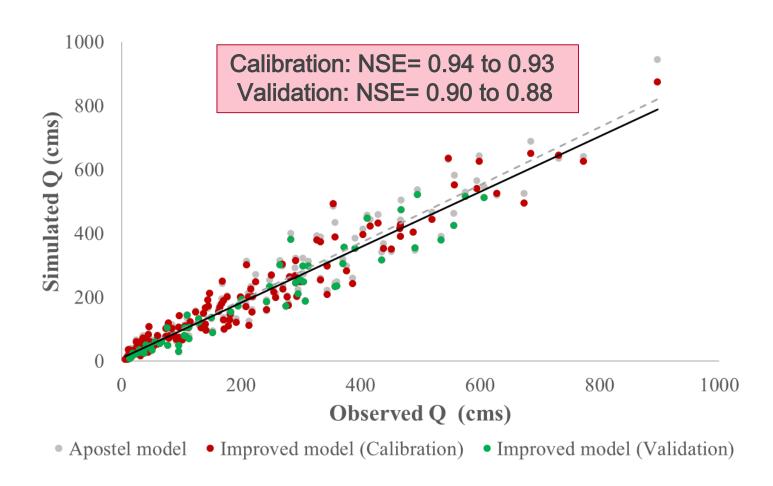
Objectives

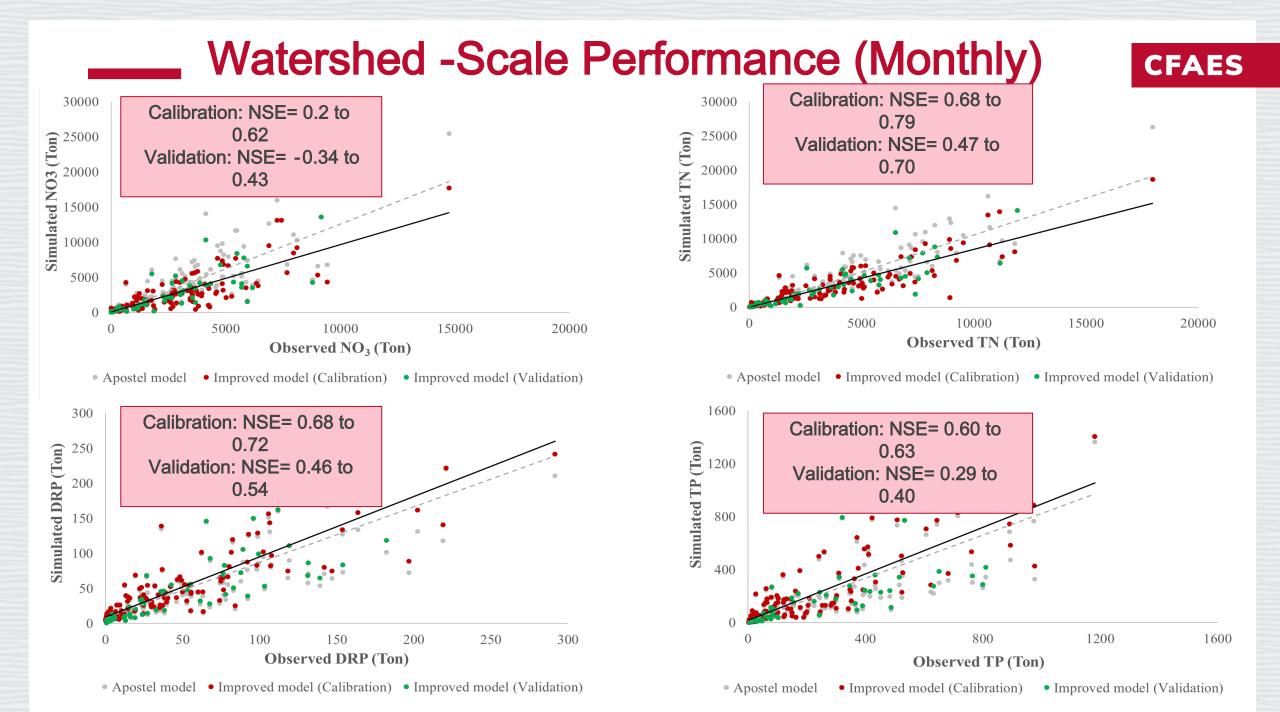


To assess the sensitivity of the SWAT model at watershed and field scales to different drain spacing configurations

with improved drainage intensity representation

Data and Methods

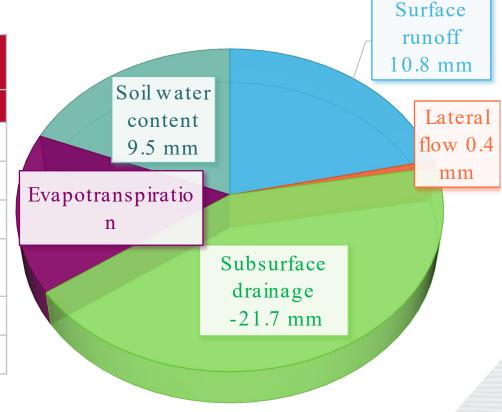




Summary of drainage intensity representation

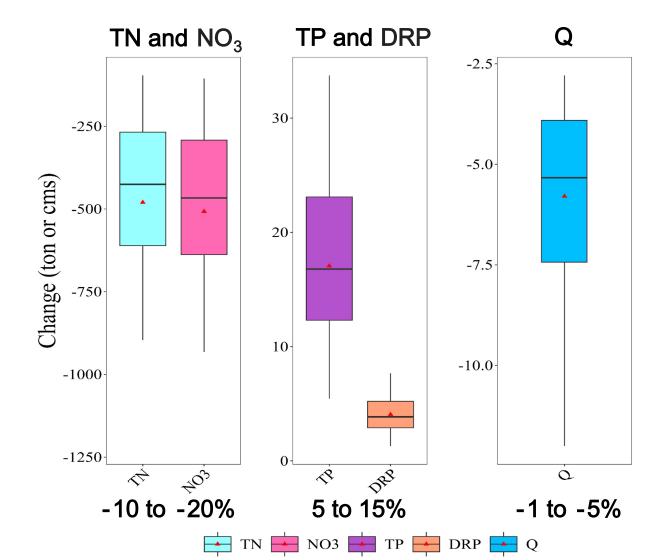
	Drain Spacing (ft (m))	Drain depth (ft (m))	Area (km²)	% of Agr Watershed Area	Drainage Coefficient (mm/day)	Number of HRUs	% of Agr Watershed Area	
Apostel et al. (2021)	15 (4.6)	3.3 (1)	5384.3	41.1	12.7 25.4	- 7072	- 41.1	
	35 (10.7)		3979.9	30.4	12.7 25.4	5603	30.4	
Improved Model	30 (9.1)	2.92 (0.89)	2947	22.5	12.7 25.4	186 3777	1 21.5	
	35 (10.7)		1260.2	9.6	12.7 25.4	646 1076	3.3 6.4	
	40 (12.2)		2.92 (0.89)	5003.1	38.2	12.7 25.4	4736 2035	26 12.2
	50 (15.2)		24.3	0.2	12.7 25.4	16 26	0.1 0.1	
	60 (18.3)		129.5	1	12.7 25.4	19 158	0.1 0.9	

Watershed -Scale Performance (Monthly)



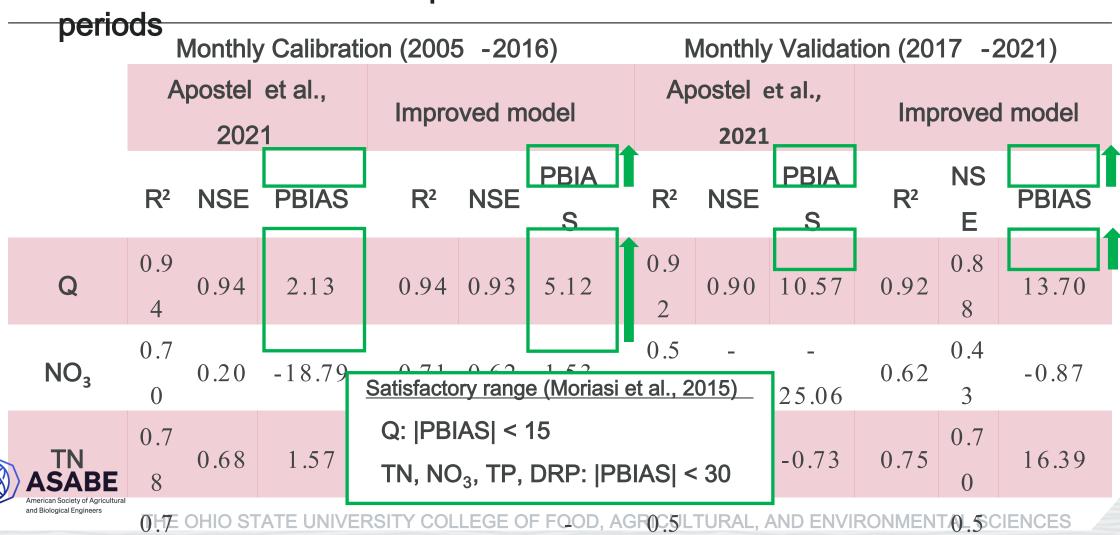
Watershed -Scale Sensitivity of the SWAT to Drainage Intensity

Average Annual Water Balance (2005 -2021)


Balance	Apostel et	Improved	Changes		
components (mm)	al., 2021	model	(mm)	(%)	
Precipitation	1004.9	1004.9	-	-	
Surface Runoff	184.2	195	10.8	6	
Lateral Flow	25.2	25.6	0.4	1.5	
Subsurface drainage	135.8	114.1	-21.7	-16	
Evapotranspiration	647.9	656	8.1	1.3	
Soil water content	212.8	222.2	9.5	4.5	

Watershed -Scale Sensitivity of the SWAT to Drainage Intensity

Annual Sensitivity (2005 - 2021)



Watershed -Scale Performance (Monthly)

CFAES

The SWAT -MRW model performance in the calibration and validation

0.46 16.33

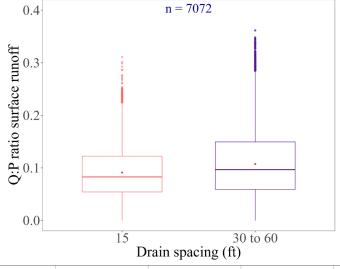
0.61

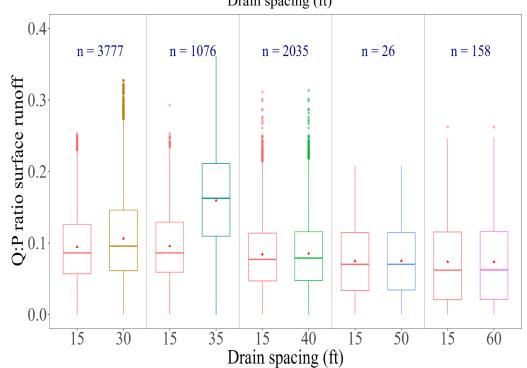
6.44

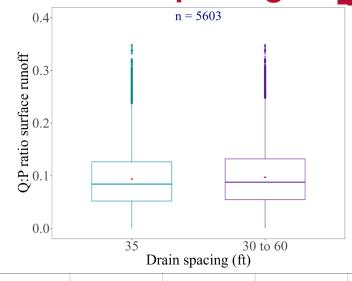
DRP

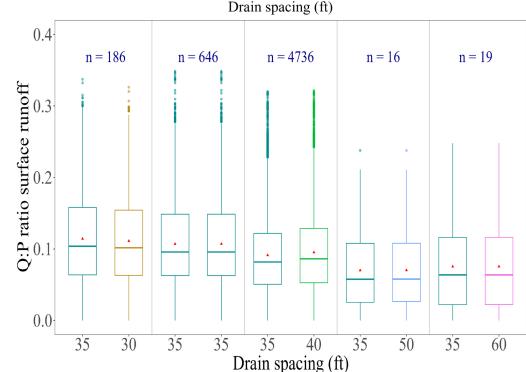
-2.93

 $0.75 \quad 0.72$


0.68


Field -Scale Sensitivity of the SWAT to Drain Spacing n = 7072 n = 5603**CFAES** O:P ratio subsurface drainage Q:P ratio subsurface drainage -80 ${
m K}_{
m Sat_Eff}$ (mm/hr) -60Q:P Ratio Subsurface **Drainage** 20 20 0.0-0.030 to 60 30 to 60 Drain spacing (ft) Drain spacing (ft) 400 400 $n = 3777 \mid n = 1076 \mid n = 2035$ n = 158n = 26n = 186 $n = 646 \mid n = 4736$ n = 19n = 16Q:P ratio subsurface drainage Q:P ratio subsurface drainage 300 300 K_{Sat_Eff} (mm/hr) ${
m K}_{
m Sat_Eff}$ (mm/hr) 200 -200100 100 0.0-0.013 35 30 15 50 15 30 35 35 50 35 Drain spacing (ft) Drain spacing (ft)


Field -Scale Sensitivity of the SWAT to Drain Spacing

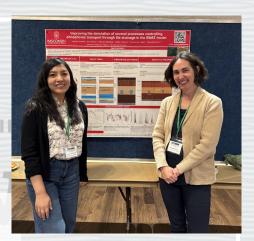

CFAES

Conclusions

- Watershed -scale sensitivity of the SWAT to enhanced drainage intensity representation
 - Significantly improved the model performance in water quality predictions
 - Annual discharge: a slight decrease in (5%)
 - Annual nitrate and total nitrogen losses: 10–20% reductions
 - Annual DRP and TP losses increased: 5 to 15%

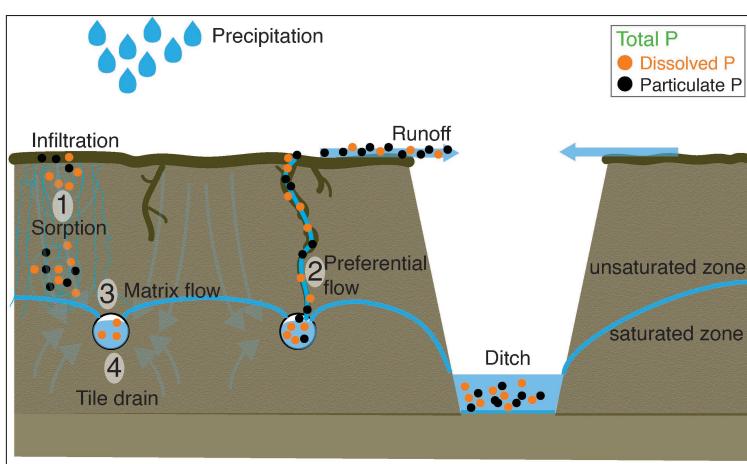
Conclusions

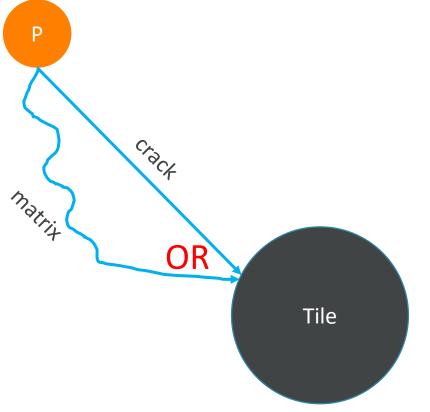
- □ Field-scale sensitivity of the SWAT to enhanced drainage intensity representation
- Drain spacings from 15 to 30-60 ft: **Reduction** in subsurface drainage mainly due to wider drain spacings of 30 and 35 ft
- Drain spacings of 40, 50, and 60 ft: Negligible changes in subsurface drainage
- Wider drain spacings of 50 and 60 ft: Higher subsurface drainage and lower surface runoff due to higher effective hydraulic conductivity

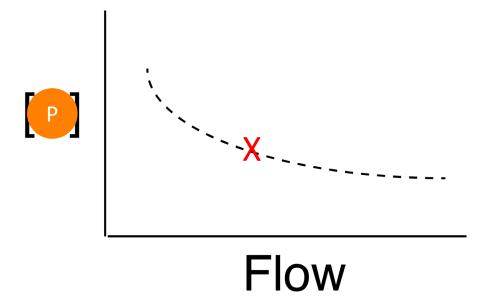

EST. 1870

TATE CITCE A TR

Phosphorus Dynamics predictions in subsurface (tile) drained watersheds

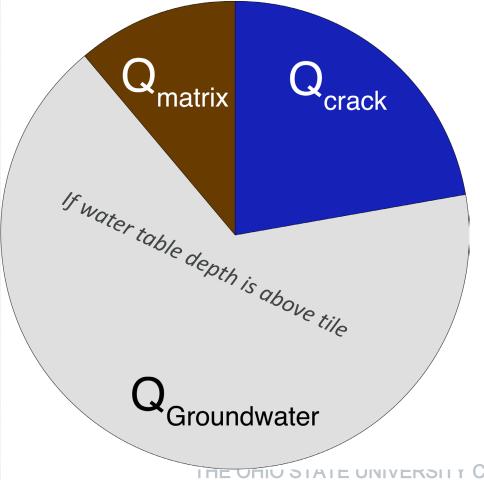



Phosphorus dynamics in tile drained landscapes



P transport associated with drainage discharge

 P transport associated with matrix, crack, and groundwater flow



 P concentration should increase during larger flow events

Hydrology – partitioning of subsurface drainage water

Pie chart of Tile Q (or Tile P) may look more like:

Proposed

Allow SWAT to calculate the Q_{crack}

Remaining water balance $(Q_{tile}-Q_{crack})=Q_{remain}$

Partition Q_{remain} as 80% Groundwater and 20% Matrix

Input parameter?

Dynamic?

Field specific (tile spacing...)

Assume one GW P concentration (0.005? <- calibrate) Fast flow represents crack flow desorption Slow flow represents matrix flow desorption

THE UNIO STATE UNIVERSITY COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

ORIGINAL solp algorithm in SWAT2012

SWAT+ solp algorithm

Step – 1 Calculate soluble P lost in surface runoff

Step – 1 Calculate soluble P lost in surface runoff

Step – 2 Calculate the amount of soluble P Leached using w_{perc}

Step – 2 Calculate the amount of soluble P Leached using w_{perc} GLEAMS equation

Step – 3 Estimate soluble p in tiles due to crack flow using $min(1, w_{crk}/3)$

Step – 3 Estimate soluble p in tiles using TileQ and the GLEAMS equation

Modified solp algorithm

New Approach:

- Processes were reorganized to better represent DP transport.
- DP transport via macropore and matrix flow were calculated on a layer-bylayer basis.

ORIGINAL solp algorithm in SWAT2012

NEW solp algorithm

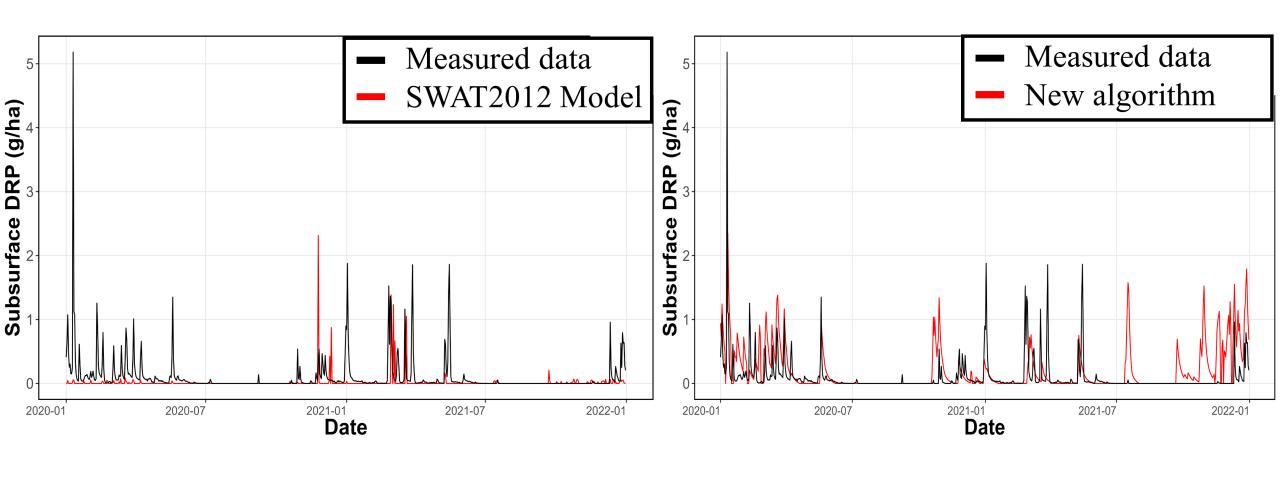
Step – 0 Calculate soluble p transport via **crack flow** for each soil layer using W_{crk} .

Step – 1 Calculate soluble P lost in surface runoff

Step – 1 Calculate soluble P lost in surface runoff.

Step – 2 Calculate the amount of soluble P Leached using w_{perc}

Step – 2 Calculate the amount of soluble P leached using **matrix flow** for each soil layer $(w_{perc}-w_{crk})$.


Step – 3 Estimate soluble p in tiles due to crack flow using $min(1, w_{crk}/3)$

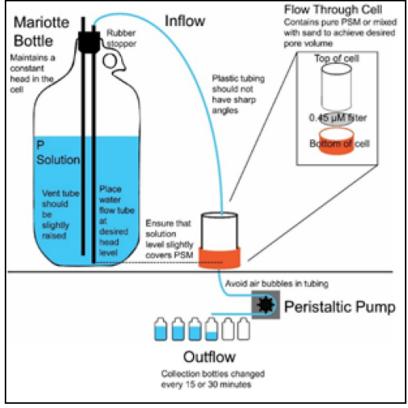
Step – 3 Calculate soluble p in tile drainage using *TileQ*.

Subsurface Dissolved Phosphorus

SWAT 2012 solp algorithm

New solp algorithm

Future & ongoing improvements...



How Dissolved Phosphorus (DP) transport is impacted by soil properties and hydrology

Flow-through P sorption and desorption tests

- Collected topsoil and corresponding subsoil samples
 (26 soil types)
- Two flowing conditions:
 - Slow Flow rate (0.5 cm/hr)
 - Fast Flow rate (25 cm/hr)

Flow-through system for studying sorption and desorption under flowing conditions

(Laboratory study by Chad Penn, USDA-ARS)

How Dissolved Phosphorus (DP) transport is impacted by soil properties and hydrology

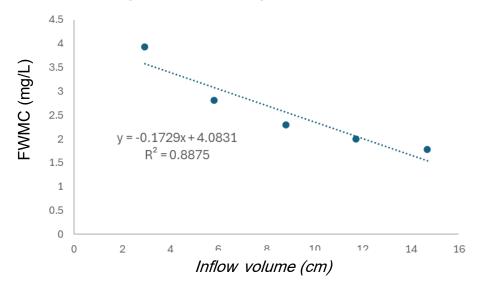
Slow Flow (Matrix Flow)

Desorption of P from topsoil

$$FWMC = m \times Q + C$$

 $m = -0.0001 \times M3P + 0.0038$
 $C = 0.0039 \times M3P + 0.0314$

Fast Flow (Crack Flow)


Desorption of P from topsoil

$$FWMC = m \times Q + C$$

$$m = -0.00003 \times M3P - 0.0001$$

$$C = 0.0015 \times M3P + 0.0374$$

Example relationship for one of the soils

FWMC: Flow Weighted Mean Concentration (mg/L)

Q: Volume of flow (cm)

m: Slope

C: Intercept

M3P: Soil test P (STP) concentrations (soil M3-P

level) of the topsoil layer (mg/kg)

Equilibrated Groundwater

$$WSP = 0.0056 \times M3P_i \times 10$$

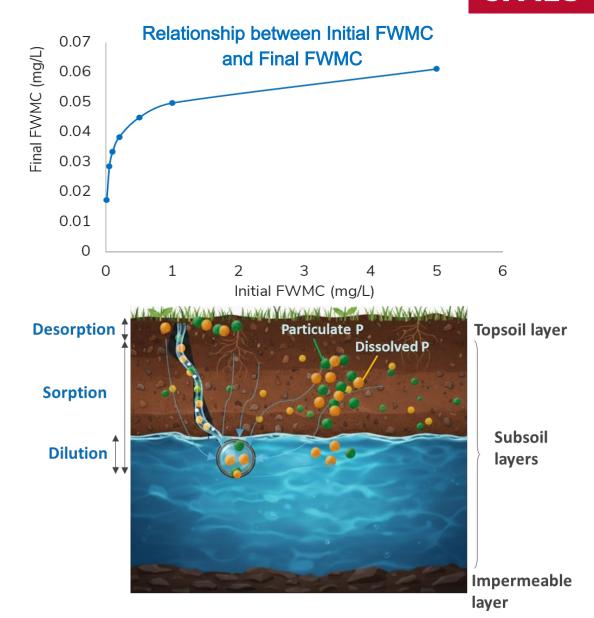
$$m = 0.0126 \times WSP$$

$$C = 0.0889 \times WSP$$

$$FWMC_{EQ} = LN(IF(FWMC_{Initial} < 0.01$$

, 0.01, $(FWMC_{Initial} \times m + C))$

m: Slope


C: Intercept

WSP: Groundwater soluble P (mg/kg)

M3P: soil test P (STP) concentrations (soil Mehlich-3 P level) in the soil layer corresponding to the groundwater depth (mg/kg)

FWMC Initial: DP concentration moving from the soil layer with tile drain (mg/L)

FWMC EQ: Equilibrium DP concentration (Final DP in outflow from the tile drain (mg/L)

Proposed Workflow of DP concentration for SWAT

CFAES

Slow Flow (Matrix Flow)

Desorption of P from topsoil

$$FWMC = m \times Q + C$$

 $m = -0.0001 \times M3P + 0.0038$
 $C = 0.0039 \times M3P + 0.0314$

Adsorption/sorption by subsoil

 $m = -0.8088 \times FWMC_{topsoil} + 0.0043 \times M3P - 1.604$ $C = -0.0019 \times M3P + 0.8342$ $DP_{add} = \frac{FWMC_{topsoil} \times Q}{Z_{subsoil} \times BD_{subsoil}}$ $FP_{sorption} = -10^{m} \times DP_{add} + C$ $FWMC_{subsoil} = (1 - FP_{sorption}) \times FWMC_{topsoil}$

Adsorption/sorption by subsoil

 $m = -0.8088 \times FWMC_{subsoil\ layer\ above} + 0.0043 \times M3P - 1.604$ $C = -0.0019 \times M3P + 0.8342$ $DP_{add} = \frac{FWMC_{subsoil\ layer\ above} \times Q}{Z_{subsoil} \times BD_{subsoil}}$ $FP_{Sorption} = -10^m \times DP_{add} + C$ $FWMC_{subsoil} = (1 - FP_{Sorption}) \times FWMC_{subsoil\ layer\ above}$

Equilibrated Groundwater

 $WSP = 0.0056 \times M3P_i \times 10$

 $m = 0.0126 \times WSP$ $C = 0.0889 \times WSP$ $FWMC_{EQ} = LN(IF(FWMC_{Initial} < 0.01$ $, 0.01, (FWMC_{Initial} \times m + C))$

Adsorption/sorption by subsoil

 $m = -0.8088 \times FWMC_{subsoil\ layer\ above} + 0.0043 \times M3P - 1.604$ $C = -0.0019 \times M3P + 0.8342$ $DP_{add} = \frac{FWMC_{subsoil\ layer\ above} \times Q}{Z_{subsoil} \times BD_{subsoil}}$ $FP_{sorption} = -10^m \times DP_{add} + C$ $FWMC_{subsoil} = (1 - FP_{sorption}) \times FWMC_{subsoil\ layer\ above}$

Continue through the layer with tile drain

Fast Flow (Crack Flow)

Desorption of P from topsoil

 $m = -0.00003 \times M3P - 0.0001$ $C = 0.0015 \times M3P + 0.0374$

 $FWMC = m \times Q + C$

DP Tile

 $FWMC_{topsoil}$

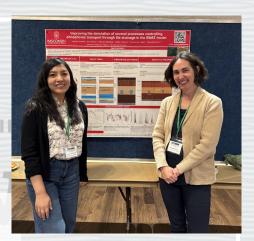
FWMC_{subsoil}

EST. 1870

Water and phosphorus Dynamics predictions in subsurface (tile) drained watersheds

Vinayak Shedekar, Margaret Kalcic, Fariba Babaeian, Lourdes Arrueta, Asmita Murumkar, Kevin King, and more...

Shedekar.1@osu.edu


EST. 1870

TATE CITCE A TR

Phosphorus Dynamics predictions in subsurface (tile) drained watersheds

Step – 0 Estimate soluble p transport via crack flow for each soil layer

```
drp\_crk(lyr,hru) = \frac{Sol\_solP_{solution,surface}.crk(lyr,hru)}{(\rho_{b(lyr,hru)}.depth_{(lyr,hru)}.k_{d,surface})+1}
              \frac{drp_{crk(lvr,hru)}}{dr_{crk(lvr,hru)}} = soluble P due to crack flow for each soil layer, kg/ha
               crk(lyr, hru) = percolation due to crack flow for each soil layer, mm
Sol\_solP_{solution,surface} = amount of phosphorus in solution in the top 10mm, \frac{kg}{ha}
                     \rho_h(lyr, hru) = soil bulk density for each soil layer
                     depth_{surface} = depth \ of \ the \ surface \ layer, 10 \ mm
               k_{d,surface} = Phosphorus soil partitioning coefficient, m3/Mg
```

Step – 1 Calculate soluble P lost in surface runoff

$$P_{surf} = \frac{P_{solution,surface}.Q_{surface}}{(\rho_b.depth_{surface}.k_{d,surface})}$$

$$P_{surf} = \frac{Sol_solP_{solution,surface} \cdot Q_{surface}}{(\rho_b.depth_{surface} \cdot k_{d,surface}) + 1}$$

 $P_{surf} = amount\ of\ soluble\ P\ lost\ in\ the\ runoff, \frac{kg}{ha}$

 $Sol_solP_{solution,surface} = amount\ of\ phosphorus\ in\ solution\ in\ the\ top\ 10mm, rac{kg}{ha}$

 $Q_{surface} = amount\ of\ surface\ runoff\ on\ a\ given\ day,mm$

 $depth_{surface} = depth \ of \ the \ surface \ layer, 10 \ mm$

 $k_{d,surface} = Phosphorus soil partitioning coefficient, m3/Mg$

Step – 2 Calculate the amount of soluble P leached via matrix flow for each soil layer.

$$P_{perc} = \frac{P_{solution,surface} \cdot W_{perc,surface}}{10. \rho_b. depth_{surface} \cdot k_{d,perc}}$$

$$P_{perc} = \frac{Sol_{SolP_{(lyr,hru)}} * (prk_{(lyr,hru)} - crk_{(lyr,hru)})}{(conv_{wt_{(lyr,hru)}}/1000) * Pperco_sub_{(lyr,hru)}}$$

```
P_{perc} = amount\ of\ phosphorus\ leached\ from\ soil\ layer. Sol_{solP_{(lyr,hru)}} = amount\ of\ phosphorus\ stored\ in\ solution. prk_{(lyr,hru)} = percolation\ from\ soil\ layer\ on\ current\ day,mm. crk_{(lyr,hru)} = percolation\ due\ to\ crack\ flow\ for\ each\ soil\ layer,mm conv_{wt_{(lyr,hru)}} = factor\ which\ converts\ \frac{kg}{kg}\ soil\ to\ \frac{kg}{ha} Pperco\_sub_{(lyr,hru)} = Phosphorus\ percolation\ coefficient
```

Step – 3 Estimate soluble p in tile drainage

$$TileP = P_{perc} * min(1, \frac{sol_{crk}}{3})$$

$$TileP = \frac{Sol_{solP(lyr,hru)} * qtile}{(conv_{wt(lyr,hru)}/1000) * Pperco_sub_{(lyr,hru)}}$$

$$Crk$$

 $tilep = soluble\ phosphorus\ in\ tile\ drainage, \frac{kg}{ha}.$

 $Sol_{SolP(lyr,hru)} = amount of phosphorus stored in solution.$

 $qtile = tile \ discharge, mm.$

 $conv_{wt(lyr,hru)} = factor\ which\ converts \frac{kg}{kg} soil\ to \frac{kg}{ha}$

 $Pperco_sub_{(lyr,hru)} = Phosphorus\ percolation\ coefficient$

Field -Scale Sensitivity of the SWAT to Drainage Intensity

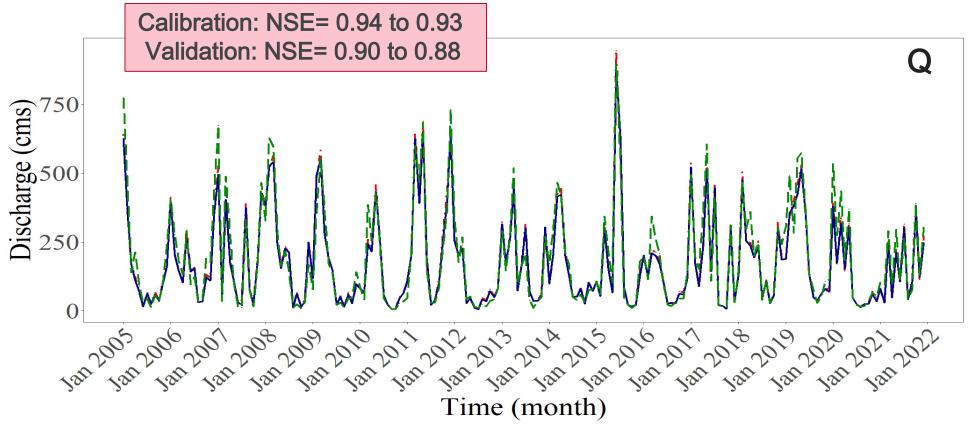
Average annual changes in water balance components (2005 -2021)

Model	Drain Spacing (ft)		Precipitati on (mm)	Surface runoff (mm)	Subsurface drainage (mm)			Evapotranspira tion (mm)	Lateral Flow (mm)
Apostel et	15		1007±50	93±16		265±42		646±49	2±5
al., 2021	35		1020±48	98±21		234±37		676±34	7±7
Improved Model	15	30	998 ± 43	120±48	1	220±94		650±41	0.4±1
		35	1001±42	20±54		72±77		707±23	0.8±2
		40	1030±58	90±16		236±33		697±37	6±6
		50	954±25	72±31		241±56	+	626±71	15±27
		60	963±27	71±41	-	289 ± 27		581±27	20±18
	35	30	1002±38	127±54		196±91		666±33	2±2
		35	1000 ± 34	132±43		191±74		662±43	3±4
		40	1023±50	101±19		225±31	III.	681±29	9±7
		50	953±19	67±36		281±48	1	577±57	27±33
		60	970±29	75±43		287 ± 30		580±17	29±24

Conclusions

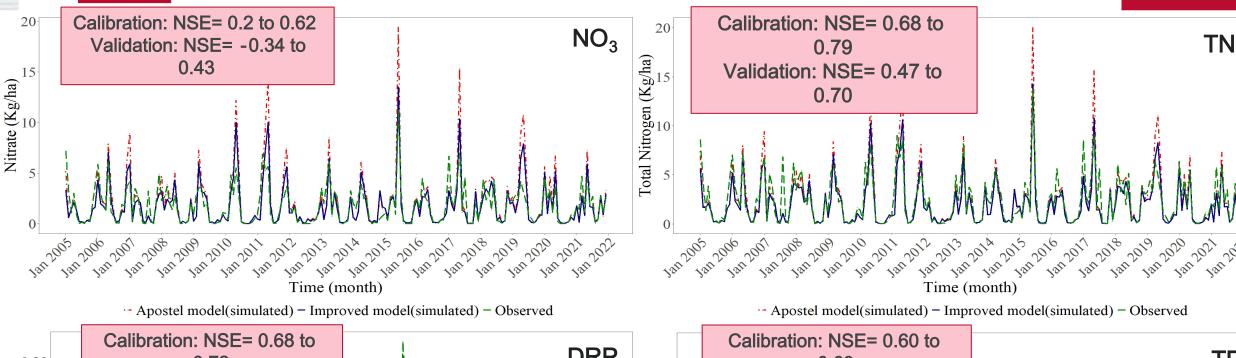
□ Field-scale sensitivity of the SWAT to enhanced drainage intensity representation

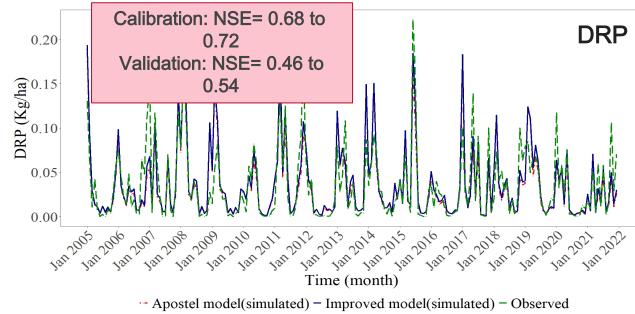
• The SWAT model may not accurately predict the effects of drain spacing at the field scale, highlighting the need for additional source code modifications

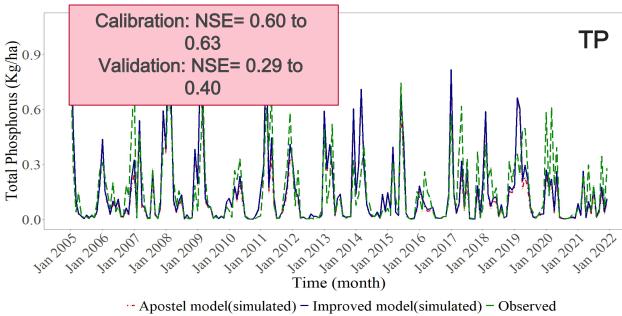

Conclusions

☐ Next Steps

- Compare SWAT simulations with DRAINMOD
- Analyze water quality and crop yields at the field scale
- Test Drainage Water Management across all suitable HRUs

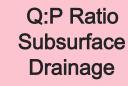

Watershed -Scale Performance


Improving drainage intensity had minimal impact on discharge

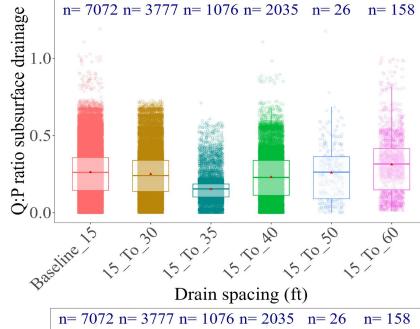


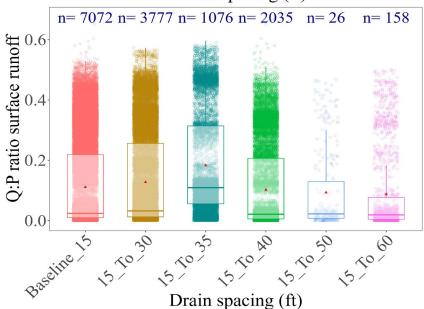
-- Apostel model(simulated) - Improved model(simulated) - Observed

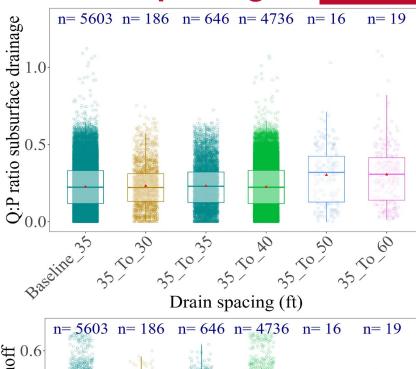
-- Apostel model(simulated) - Improved model(simulated) - Observed

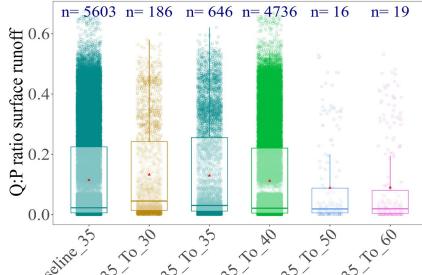

Watershed -Scale Sensitivity of the SWAT to Drainage Intensity

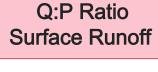
Monthly
Sensitivity
(March-July)
(2005-2021)




Field -Scale Sensitivity of the SWAT to Drain Spacing


CFAES





Drain spacing (ft)

