2023/6/30 SWAT Conference

Assessment of Ecosystem Services by applying SWAT model for forest and paddy fields watershed in snowy area

Yuri ADACHI

Graduate school of Agriculture(M1), Tokyo University of Agriculture and Technology **Supervisor: Prof. Tasuku KATO**

Ecosystem services

Ecosystem services (ESs)are "The benefits people obtain from ecosystems" (MA, 2005)

Provisioning

- Food
- Fresh water
- Wood and Fiber
- Fuel

Regulating

- Climate regulation
- Flood regulation
- Disease regulation
- Water purification

Cultural

- Aesthetic
- Spiritual
- Educational
- Recreational

Supporting

- Nutrient cycling
- Soil formation
- Primary production

Ecosystem services in Japanese rural area

- Concern: Impact of agricultural management change caused by depopulation, and climate change on ESs.
- Policy: Government subsidy is paied for the activities that aim to maintain the paddy field.
- Needs for assess impact of environmental conservation agriculture

This study focus on ESs in Japanese rural area in current situation to make standard to assess ESs by analyzing water balance.

Assessing hydrological ecosystem services in Asuwa river basin, Japan

- Assessing snow melt affect on agricultural management (water regulation services)
- Quantifying water balance of the forest and paddy fields watershed in snowy area
- Analyzing Observed water quality to compare with the model results
- Hydrological process was evaluated by using SWAT model.

Asuwa river basin in Fukui prefecture, Japan

SWAT model

Fig4. SWAT model (Source: SWAT 2009 Theoretical documentation)

- A physically based hydrological model
- Designed to predict the effects of land management practices on water, sediment, and agricultural chemical yields in basins
- Based on water balance equation

$$SW_t = SW_0 + \sum_{i=1}^t R_{day} - Q_{surf} - E_a - W_{seep} - Q_{gw}$$

 SW_t : final soil water content; SW_o : initial soil water content R_{day} : precipitation ; Q_{surf} : surface runoff ;

 E_a : evapo-transpiration; W_{seep} : water entering unsaturated zone;

 Q_{aw} : amount of return flow

Input data

0 2 4 8 Kilometers

Fig5. DEM (2016, GSI)

Fig6. Landuse (2016, MLIT) **Fig7.** Soil (2017, NARO)

Climate data

 Table1.
 Weather data and weather station

Climate	Station
Rainfall	Miyama, Takefu, Fukui
Temperature	Fukui, Ono
Wind speed, Humid, Radiation	Fukui

Table2. Weather data

Climate	Average	Min.	Max.
Rainfall (mm/day)	7.14	0	185
Temperature_Fukui (°C)	15.2	-5.2,	37.7
Temperature_Ono (°C)	13.7	-12.5	36.9

Year: 2009-2020

Sources: Japan Meteorological Agency

Flow chart

- ESs was assessed by separating water discharge to surface runoff, lateral flow and ground water discharge.
- At discussion part, observed water quality was analyzed to compare with the model result.

Calibration

Table3. Parameter

Parameter	Default	Fitted	Rank	Description
CN2	74	51.383335	1	SCS runoff curve number
CH_K2	0	7.831329	2	Effective hydraulic conductivity in main channel alluvium (mm/hr).
CH_N2	0.014	0.035177	3	Manning's "n" value for the main channel
GW_DELAY	31	5	4	Groundwater delay
ALPHA_BF	0.048	0.3	5	Base flow alpha factor
GW_REVAP	0.02	0.0395	6	Groundwater "revap" coefficient
SMFMX	1	1.5	7	Maximum melt rate for snow during year (summer solstice)
SMTMP	0.5	1	8	Snowmelt base temperature
SFTMP	3	5	9	Snowfall temperature
GWQMN	1000	1142.5	10	Threshold in the shallow aquifer for return flow to occur
ESCO	0.95	0.5	11	Soil evaporation compensation factor

Hydrograph

Fig10. Hydrograph (2018-2020)

Calibration and Validation: 2014 - 2020 Indications (2014-2020) R2: 0.64 NSE: 0.62 PBAIS: 17.0

Hydrograph

Fig11. Hydrograph (2020)

Annual water balance change

- High discharge ratio at snow melt season.
- High ground water discharge ratio especially snow melt season and autumn.

Paddy management schedule

April - May: Paddling

May-Mid Jun: Inundation Mid Jun-July: midseason drainage July-August: Inundation

Water balance

- Discharge ratio: 0.82
 →Water storage
- ET/ Rainfall: 0.08
- Surface runoff/ Total discharge: 0.05
- Ground water discharge/ Total discharge: 0.57

Fig13. Annual Water balance (2020)

Observed data – Water quality

Fig14 Location of water sampling points

Most of the land use is forest.

Model results of discharge process may not be differed in this basin.

Water quality can be varied because of agricultural and domestic discharge.

Water sampling (EC, N, P)

- Downstream (1)
- Forest (10),
- Paddy (5),
- Village (4)

Observed data – Rainfall and EC

Fig15. Rainfall and EC

Upstream point

Discharge from forest →EC is stable and raise little during snow melt season and autumn.

Downstream point

Affected by paddy and residence

→EC raise during snow melt season and autumn caused by high ground water discharge ratio

Observed data – Nitrogen and Phosphorous

• N: Water purification of the river

• P: Diluted with discharge from forest

Water sampling date: 2021/11/17, 2022/4/15, 2022/6/16, 2022/10/17, 2022/12/1

Fig16. Nitrogen and Phosphorous

- Hydrological process was evaluated satisfactory by using SWAT model.
- Water balance analysis shows that snow melt water and ground water discharge contribute to spring agricultural management of paddy field in the basin.
- Model result shows high ratio of groundwater especially during snow melt season and autumn, and observed water quality analysis shows high EC (high ground water discharge ratio)during this season.
- Observed concentration of N and P shows water purification of the river and dilution with discharge from forest.

Thank you for your attention.

