

Comparative assessment of different gridded meteorological datasets in SWAT modelling of the **Apayao-Abulug River** Basin (AARB), Apayao, **Philippines**

RA Tubale, MV Ligaray, & RJP Delfino

IESM, CS, UP Diliman

Challenge: "Data Poverty"

Philippines

- Freshwater plays a role in development
 - 421 principal rivers
 - 140 critical watersheds
 - 221 lakes
 - 18 major river basins

Pertinent datasets

- Streamflow from DPWH
- Meteorological data from PAGASA and DOST-ASTI
- A degree of disjunct in access and distribution of pertinent data for hydrological studies

Alternative: Use of satellite-based, blended, and reanalysis gridded meteorological datasets

Streamflow and sediment transport

Pollutant transport

Hydropower utilization

Role of forest cover and climate on runoff regulation

Calibration/ meteorological data

Demand based problems

<u>Meteorological data is a common</u> <u>limitation in studying Philippine RBs</u>

Figure 2. Map of published literature of SWAT studies in the Philippines.

Apayao-Abulug River Basin (AARB)

9th longest river in the Philippines 280,290.31 ha

Northern Luzon:

Calanasan, Apayao to Abulug, Cagayan

Headwaters: Mt. Magna,

Calanasan

Gauging station: Abulug, Cagayan and Nagan, Pudtol, Apayao High flood vulnerability Climate Type: III, II, and I

Figure 3. The Apayao-Abulug River Basin (AARB) Digital Elevation Map.

Objective

Evaluate the applicability of different gridded meteorological datasets to the SWAT hydrologic modeling of the data scarce river basin of the Apayao-Abulug River Basin (AARB), a critical river basin in Northern Luzon, Philippines.

Methodology

Spatial maps

Soil Map (FAO DSMW)

ESRI 2017 LULC map

Figure 4. Soil and land use-land cover data used in the SWAT models of AARB.

Gridded precipitation products

Figure 5. Mean annual precipitation estimates of the AARB from different gridded meteorological datasets.

Results

Precipitation climatological averages

Figure 6. Estimated average monthly precipitation within AARB from 5 different RA datasets and climatological average streamflow in the basin.

Initial performances

Figure 7. Hydrographs of 6 default monthly SWAT simulations of the AARB using 2016 ESA CCI LULC and different precipitation and climate data.

Calibration and validation

20,000 simulations over 2 model setups
 Best calibration signal: ERA5 driven model

 Table 1. Table of best deterministic and stochastic SGOFs from the ERA5 and CHIRPS

 CHIRTS driven models.

Meteorological data	NSE		PBIAS		RSR		p-factor*		r-factor*	
	cal	val	cal	val	cal	val	cal	val	cal	val
ERA5	0.704	0.391	0.250	0.187	0.539	0.773	0.700	0.520	0.980	0.590
CHIRPS-CHIRTS	0.698	0.300	0.228	0.252	0.545	0.829	0.650	0.760	1.300	0.630
* values extracted from iterations with best stochastic SGOFs										

Calibrated hydrographs

ERA5 Figure 8. Calibrated hydrographs of the ERA5 and CHIRPS-CHIRTS driven SWAT models.

- Models show marginal performances using NSE
- CHIRPS-CHIRTS driven models show better stochastic performance than ERA5
- ERA5 driven models struggle to capture both streamflow lows and peaks especially during validation period

800

1000

1200

1400

SWAT and the SEA region

Table 2. Results of SWAT studies in SEA using ERA5 and CHIRPS-CHIRTS datasets.

Basin	Dataset	Result	Authors	
Apayao-Abulug River basin	GLDAS, CFSR, ERA5, CHIPS-CHIRTS, GPM, Interpolated	ERA5 and CHIRPS-CHIRTS models are equifinal > GPMv07, GLDAS, CFSR (streamflow and water balance components)	Current study	
Maringalo, Daet, Abuan, Kabulnan river basins	CHIRPS-CHIRTS	Surface runoff and streamflow suitability (streamflow)	Alejo et al., 2021	
Kelantan river basin, Malaysia	APHRODITE, CHIRPS, ERA5- Land, NASA POWER	APHRODITE; NASA POWER > ERA5-Land temperature data (streamflow and drought indices)	Du et al., 2025	
Lower Lancang-Mekong river basin, China	Gauge, IDW data, TRMM, CHIRPS	TRMM and CHIRPS (streamflow)	Luo et al., 2019	
Tonle Sap basin, Vietnam	APHRODITE, ERA5, TRMM, IMERGv6, CPC, SA-OBS	IMERGv6>TRMM>APHRODITE>ER A5 (streamflow and ET)	Ang et al., 2022	

Mean annual water balance

Figure 9. Annual surface runoff ratios to total flow.

↑ Surface runoff ↓ Infiltration

Mean annual water balance

Figure 10. Annual groundwater ratios to precipitation.

CHIRPS-CHIRTS driven model significantly limited

Percolation, Groundwater flow, and Lateral flow

Mean annual water balance

Figure 11. Annual actual evapotranspiration ratios to precipitation.

CHIRPS-CHIRTS driven models significantly limit

Actual evapotranspiration

Fitted model (ERA5)

Annual basin precipitation: 3,053.2 mm/year

Surface runoff 47.64% of total flow

Deep aquifer loss rate: 1%

Actual evapotranspiration = 31% of precipitation

✓ 78.31% of annual demand (PET)

Monthly range 32.67%-98.2% of PET

Baseflow = 52.36% of total flow

12.11%-81.78% monthly contribution

Figure 12. Water balance of the fitted SWAT model for AARB using the ESRI 2017 LULC map and ERA5 dataset.

Fitted model

- Correlation with ERA5 precipitation data
 - $> R_{SURQ} = 0.802 \ (R^2 = 0.644)$
 - $ightarrow R_{WYLD} = 0.766 \ (R^2 = 0.586)$
 - Baseflow and AET have weak correlations
- ➢ AET (R = 0.0678 (R² = 0.00458))
 - Canopy free water, soil evaporation, plant evapotranspiration, surface water evaporation
- Baseflow (R = 0.363 ($R^2 = 0.132$)
 - Poor soil and channel alluvium hydraulic conductivities, low recession factor, moderate-long groundwater delay

Figure 13. Scatter plots of monthly precipitation with surface runoff, actual evapotranspiration, baseflow, and water yield.

Conclusions

- ERA5 and CHIRPS-CHIRTS driven models produced satisfactory and equifinal models for the AARB among different gridded meteorological data
- Validation struggled due to uncaptured extreme precipitation events
- CHIRPS-CHIRTS driven models significantly limit key water balance components in the AARB.

Thank you very much!

Rhollthan A. Tubale

Graduate student IESM, CS, UP Diliman

ratubale@up.edu.ph