SWAT supporting cost-effectiveness of riparian forests for river water quality improvement

> Emanuel Escobar Research Fellow (UMinho, Portugal)

emanuelescobarjuipa@gmail.com

Claudia Carvalho-Santos, Ana Castro, Elif Ozturk, José Pedro Ramião, Ana Faria Lopes, Cláudia Pascoal





**Universidade do Minho** Escola de Ciências centro de **biologia molecular** e ambiental

**IB·S** 

INSTITUTO DE CIÊNCIA E INOVAÇÃO PARA A BIO-SUSTENTABILIDADE



2022.06375.PTDC





12<sup>th</sup> July, 2024

## **1. Introduction**





Poor

### Environmental Effectiveness of schemes (based on meta-analysis)



| Buffer width       | 5 m | 10 m | 20 m | 50 m | 100 m |
|--------------------|-----|------|------|------|-------|
| Nitrate-N          | 20% | 30%  | 40%  | 80%  | 90+%  |
| Phosphate-P        | 10% | 20%  | 30%  | 60%  | 90+%  |
| Suspended Sediment | 80% | 90+% | 90+% | 90+% | 90+%  |

Forests for Water Services: A Step-by-Step Guide for Payment Schemes

Table 2

Percent reduction in diffuse pollutant concentration from upslope land to watercourses achievable from a well-designed and managed woodland buffer of variable width. Interpolated from relationships derived from review by Perez-Silos (2017).

# Best agricultural practices on water quality

- Fertilizer incorporation, conservation tillage and Filter Strips
- 25% reduction in sediments and nutrient export







**water** 

Article

Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin

## 2. Project structure



米以

Universidade do Minho Escola de Ciências

**Tree-based solutions** 

Hydrological modelling

Water quality

Cost-benefit analysis

## 3. Objectives

- To evaluate the **environmental effectiveness** of 2 riparian forest buffer scenarios in reducing sediments and nutrients to the rivers using **SWAT**
- To calculate the **cost-effectiveness** of the of 2 riparian forest buffer scenarios



### A) Study area



Cávado River Basin

- ✤ Area 1581 km<sup>2</sup>
- Annual precipitation is 1300 mm
- 9 dams located
- Soil classes were aggregated into 8 groups
- Land covers were aggregated into 16 groups
- Three classes of slope

#### **B)** Data

| Variables                     | Source                                            | Description                                                                                                                                                         |  |  |
|-------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DEM                           | NASA Shuttle Radar Topogra-<br>phy Mission (SRTM) | 1 Arc-Second Global Land Elevation Map                                                                                                                              |  |  |
| Stream network                | SNIAmb                                            | Stream network according to the Water Framework Directive (WFD)                                                                                                     |  |  |
| Land cover                    | DGT                                               | COS 2010 (Land use map), 1 ha (minimum mapping unit). Classes were aggregated into seven main cover classes                                                         |  |  |
| Soil                          | Leitão et al. (2013)                              | Soil Ecological Value of Mainland Portugal, 1:50 000. Classes were aggregated into seven main soil classes                                                          |  |  |
| Precipitation and temperature | E-OBS                                             | Mean daily precipitation (mm), maximum and minimum daily temperature (°C)<br>from E-OBS gridded dataset, from 1970 to 2018                                          |  |  |
| Climate (other variables)     | SNIRH                                             | Hourly values from 2003 to 2017 were converted to daily values of solar radiation (MJ), relative humidity (%), and wind speed (m/s) from climate 3 climate stations |  |  |
| River discharge               | SNIRH                                             | Daily observations of river discharge (m <sup>3</sup> s <sup>-1</sup> ) at 1 hydrometric station. Calibration period: 1980–1982; Validation: 1983–1985              |  |  |
| Water flow-in to reservoirs   | SNIRH                                             | Daily observations of water flow-in (m <sup>3</sup> s <sup>-1</sup> ) to 6 reservoirs. Calibration period: 2004–2006; Validation: 2015–2017                         |  |  |
| Reservoirs                    | SNIRH, EDP                                        | Location and input data for reservoirs                                                                                                                              |  |  |
| Water abstraction             | SNIG, APA                                         | Location of surface water abstractions and volume of water abstracted                                                                                               |  |  |

Soil & Water SWAT Assessment Tool

## C) Calibration and Validation



\_\_\_\_\_water

Article

#### Modeling the Effectiveness of Sustainable Agricultural Practices in Reducing Sediments and Nutrient Export from a River Basin

MDPI

José Pedro Ramião <sup>1,2,3,</sup>\*<sup>1</sup>), Cláudia Carvalho-Santos <sup>1,2,3</sup><sup>1</sup>), Rute Pinto <sup>4</sup> and Cláudia Pascoal <sup>1,2,3</sup><sup>1</sup>

Modified SWAT general parameters for Cávado basin during calibration and validation period (1995-2001) with 3-year period of warm-up

| Parameters      | Description in SWAT                    | Initial<br>value | Calibration |
|-----------------|----------------------------------------|------------------|-------------|
| Groundwater     |                                        |                  |             |
| Cn2             | Curve number for moisture condition II | Various          | -10         |
| Reservoir       |                                        |                  |             |
| RES_D50         | Grain size of<br>sediments             | 0                | 20          |
| <b>RES_NSED</b> |                                        |                  |             |
|                 | Equilibrium sediment concentration     | 1                | 0.9         |
| Sediments       |                                        |                  |             |
| USLE_K          | Erodibility factor                     | 0.23             | 0.02        |
| Nitrates        |                                        |                  |             |
| NPERCO          | Nitrate percolation coefficient        | 0.20             | 0.97        |
| Phosphorus      |                                        |                  |             |
| ERORGP          | Phosphorus<br>enrichment ratio         | 0                | 1.14        |

## D) Riparian Forest scenarios development

#### **D1) Opportunity Mapping**



#### D2) Creation of new land cover

- Two scenarios of 2.5 and 5 m of riparian forest buffer
- Applied only in 10 subbasins
- Create one more land cover class (SALG)
- Add SALG class that intersects in the Agriculture lands (areas more than 2 ha)





#### **Species of riparian forest (SALG)**:

Willow, Oak and native forest

## Lowlands with intensive dairy farming

### **E) Cost-Effectiveness Analysis**

#### i) Total cost equation

$$TC_{PV} = (C_{plant.})_{t=0} + \sum_{t=1}^{T} \frac{(C_{maint.} + C_{opp.})}{(1+d)^t}$$

TCpv= Total cost

Cplant = cost of planting the forest

Cmaint = cost of forest maintenance

Copp = opportunity cost

d = 3.24 interest rate of 10-year government bonds

#### ii) Environmental effectiveness



EEj = environmental effectiveness or water quality improvement for pollutant j, Pbt = pollution level in the water at time t in the baseline scenario (i.e. no forestation) Pst = is the pollution level after the forestation scenario

 $EE^{j} = \sum_{t=1} p_{st} - p_{bt} \leftrightarrow p_{st} < p_{bt}$ 

T = lifespan considered for the scenarios.

#### iii) Cost-effectiveness ratio

$$CE_j = \frac{-(TC_{PV})/n_P}{EE^j}$$

Cej =cost-effectiveness ratio for pollutant j

TCPV = present value of the total cost

nP = number of pollutants

Eej = environmental effectiveness of the forestation scenario for pollutant j

## **5. Results**





## **5. Results**

## Environmental effectiveness

| Scenario | Total<br>suspended<br>sediments | NO <sub>3</sub> | Ρ             |
|----------|---------------------------------|-----------------|---------------|
| 2.5 m    | <b>\$</b> 5.3%                  | ₽2.4%           | <b>1</b> .8%  |
| 5 m      | <b>↓</b> 32.9%                  | <b>4</b> %      | <b>↓</b> 3.3% |



## **5. Results**

## **Total costs**

**2.5m buffer (29 ha)** 

#### 5m buffer (57 ha)

| ltem                   | Cost(€)<br>(min) | Cost(€)<br>(max) | Cost(€)<br>(average) | ltem                  | Cost(€)<br>(min) | Cost(€)<br>(max) | Cost(€)<br>(average) |
|------------------------|------------------|------------------|----------------------|-----------------------|------------------|------------------|----------------------|
| 1. Forest Plantation   | 17,680.13        | 265,202.01       | 61,880.46            | 1. Forest Plantation  | 34,052.01        | 510,780.01       | 119,182.01           |
| 2. Maintenance         | 363,017.58       | 499,149.17       | 431,083.38           | 2. Maintenance        | 699,173.15       | 961,363.09       | 830,268.12           |
| 3. Opportunity<br>cost | 0                | 2,414,072.63     | 1,207,036.31         | 3.Opportunity<br>cost | 0                | 4,573,263.66     | 2,286,631.83         |
| Total cost             | 380,697.71       | 3,178,423.81     | 1,700,000.16         | Total cost            | 733,225.16       | 6,045,406.78     | 3,236,081.96         |



### **Cost-effectiveness Ratios (€/mg)**

#### 2.5m buffer

#### 5m buffer

| CE              | Nitrates               | Phosphorus   | Sediments |  |
|-----------------|------------------------|--------------|-----------|--|
| <b>S</b>        | (N – NO <sub>3</sub> ) | (P)          | (TSS)     |  |
| Cost Min        | 13,631.83              | 196,913.31   | 398.25    |  |
| Cost Max        | 113,811.41             | 1,644,018.11 | 3,325.02  |  |
| Cost<br>Average | 60,872.75              | 879,313.52   | 1,778.41  |  |

| CE              | Nitrates<br>(N – NO <sub>3</sub> ) | Phosphorus<br>(P) | Sediments<br>(TSS) |
|-----------------|------------------------------------|-------------------|--------------------|
| Cost Min        | 16,950.55                          | 209,328.24        | 123.53             |
| Cost Max        | 139,756.5<br>5                     | 1,725,901.45      | 1,018.52           |
| Cost<br>Average | 74,811.12                          | 923,868.12        | 545.21             |

Least costly pollutant is sediment in both scenarios

Phosphorus is the most expensive

## 6. Conclusions

**SWAT** was able to capture the hydrology of Cávado basin and support **economic analysis** 

**Riparian forest buffers** demonstrate their ability to regulate pollutants

**Sediments were the least costly** pollutant to reduce in both scenarios

The **cost-effectiveness** analysis is important to support the implementation of **environmental financial schemes** to protect the water bodies



## THANK YOU!!!



2022.06375.PTDC

https://trees4waterpt.wixsite.com/trees-4-water/

Acknowledgments:







