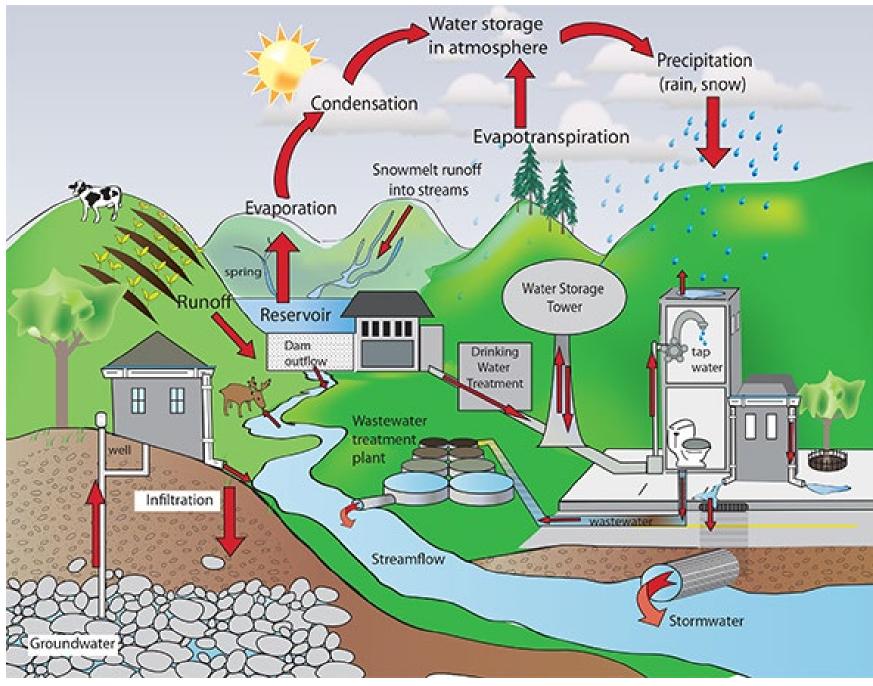
Machine learning based forecasting and decision

Fearghal O'Donncha, Muneeza Asmat, Malvern Madondo, Peimeng Guan, Arun Bawa, Raya Horesh, Michael Jacobs, Raghavan Srinivasan

Water Availability



Source: Cary Institute

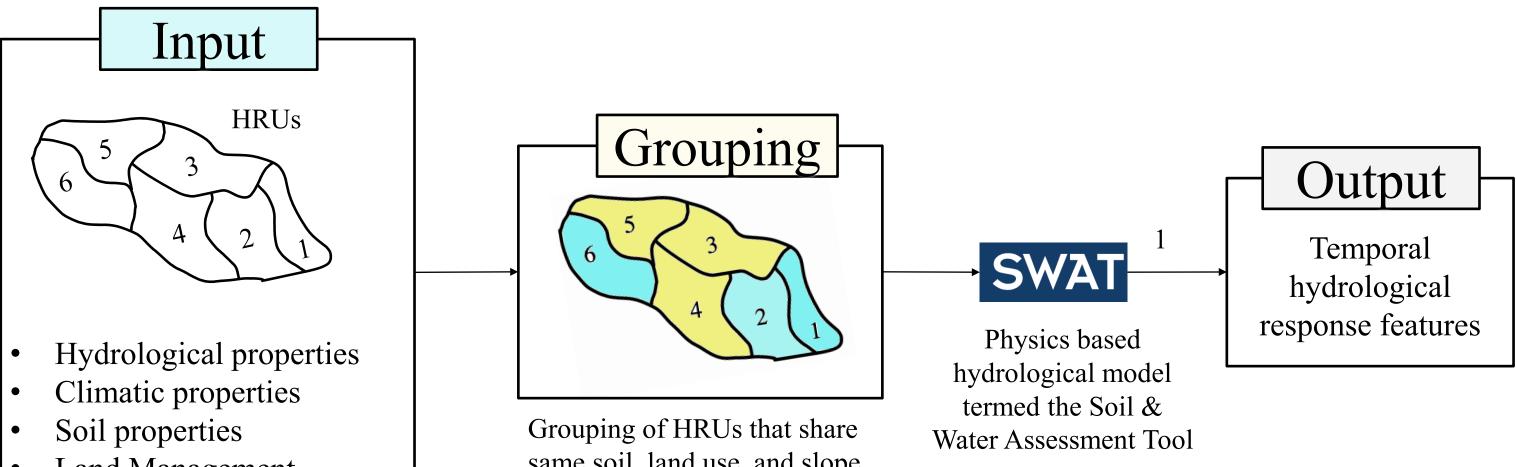
47% watersheds face water shortages by 2071

37% of total water usage from agriculture

87% decline in freshwater species since 1970

25% increase in global population by 2050

Existing Methods for Soil Moisture (SM) Forecast



Land Management

Hydrological Response Units (HRUs) delineation of spatial extents

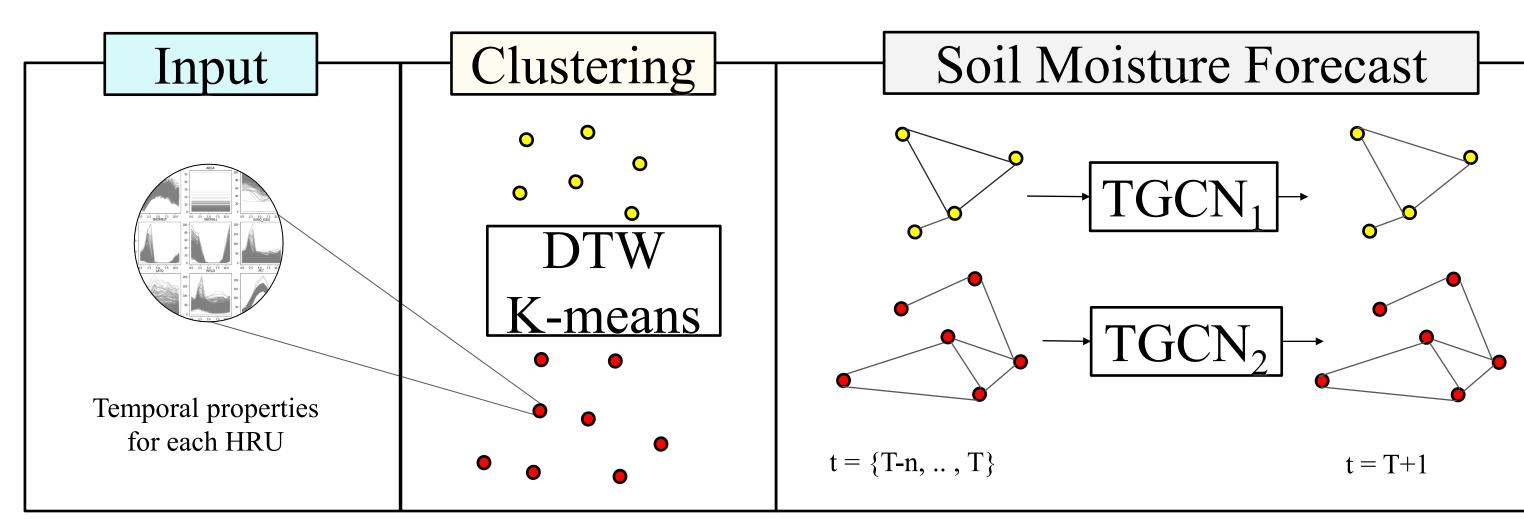
same soil, land use, and slope characteristics

[1] J. G. Arnold, J. Kiniry, R. Srinivasan, et.al. "Soil and Water Assessment Tool input/output file documentation version 2012. Technical report", Texas Water Resources Institute, 2012

Computationally Expensive

Oversight from domain experts

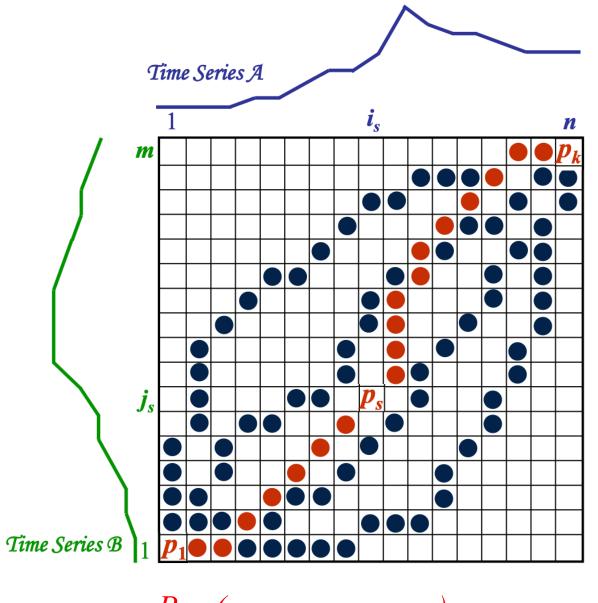
Our Domain-Inspired Approach for SM Forecast



~99k HRUs 81 Temporal Features Monthly data for 38 years Dynamic Time Warping (DTW) Temporal Graph Convolution Neural Network (TGCN)

Dynamic Time Warping

A phase invariant metric for measuring similarity between two discrete time series.¹



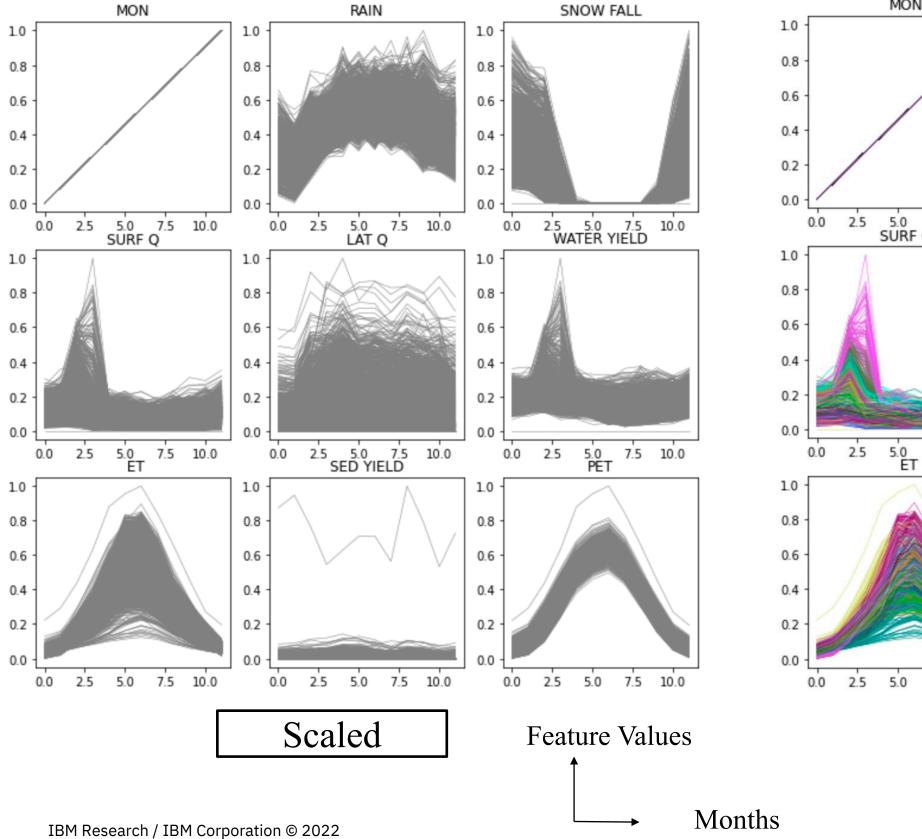
To find the optimal match between time series A and B:

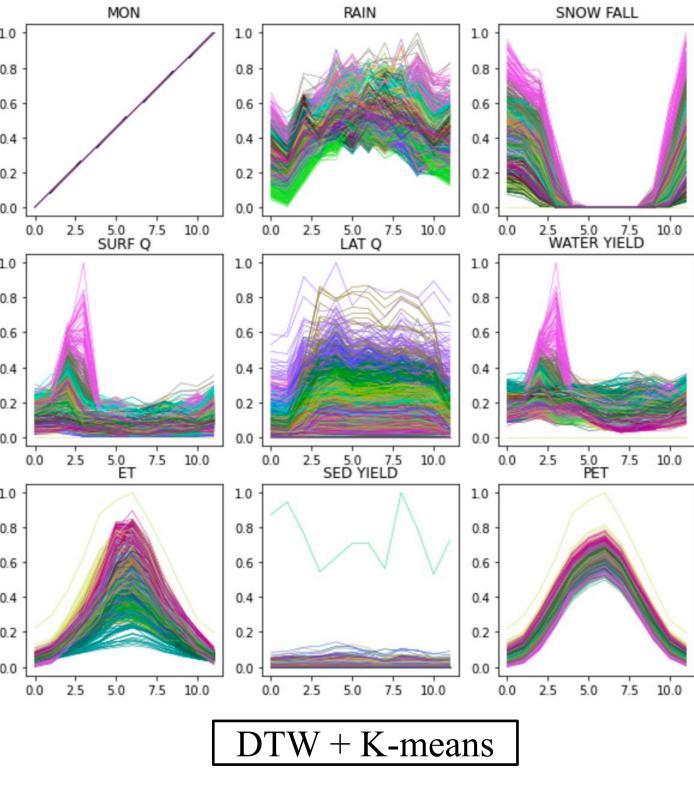
- Populate the distance matrix. 1.
- Find **P** (warping function) such that it 2. minimizes the total distance between A and B subject to regularity conditions:
 - Monotonicity.
 - Continuity. 2.
 - Boundary conditions. 3.
 - Slope Constraint. 4.

[1] https://www.math.emory.edu//~lxiong/cs730 s13/share/slides/searching sigkdd2012 DTW.pdf

 $P = (p_1, \ldots, p_s, \ldots, p_k)$

Clustering Results

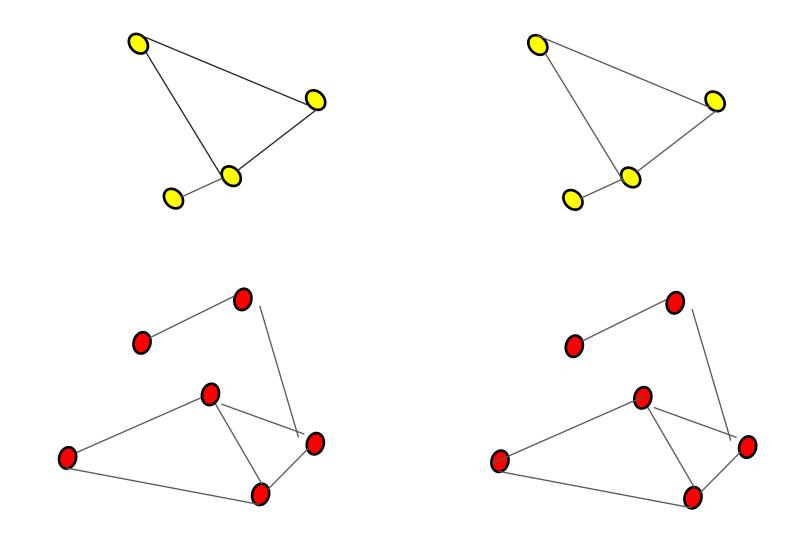




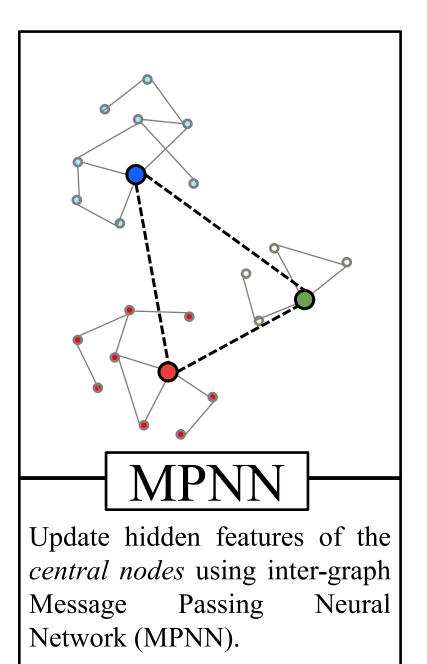
Temporal Graph Convolutional Network (TGCN)

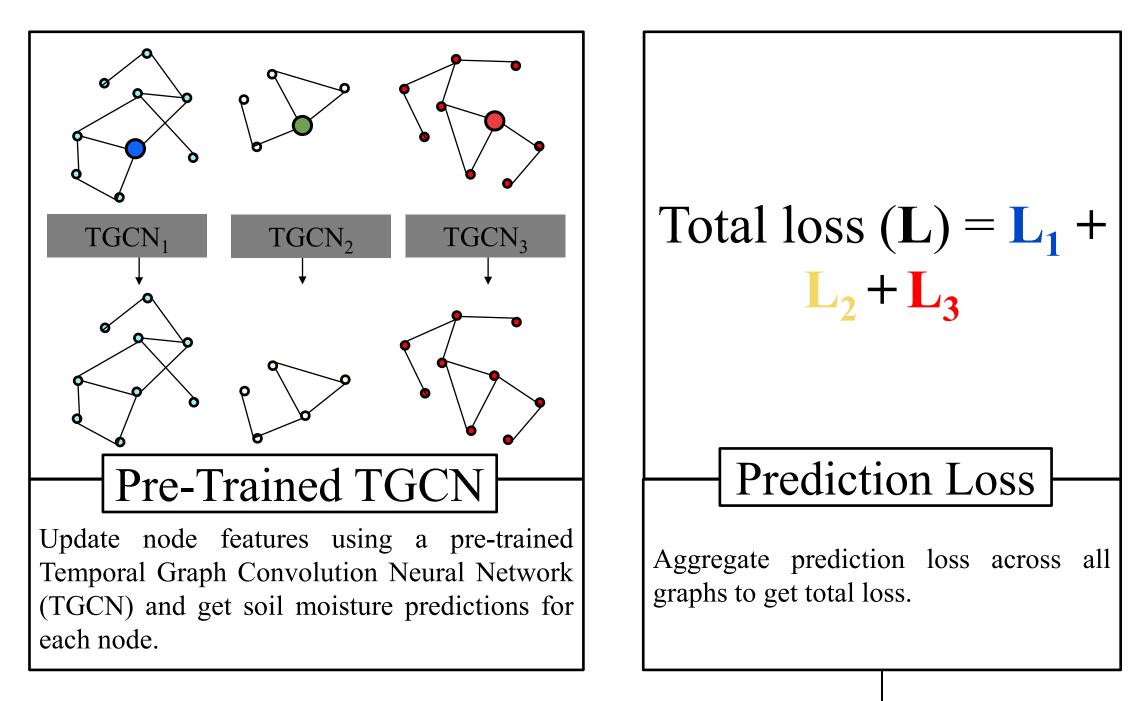
A graph is a data structure consisting of two components: nodes (vertices) and edges.

Graph Neural Networks (GNNs) are a class of deep learning methods designed to perform inference on data described by graphs.



TGCN Implementation





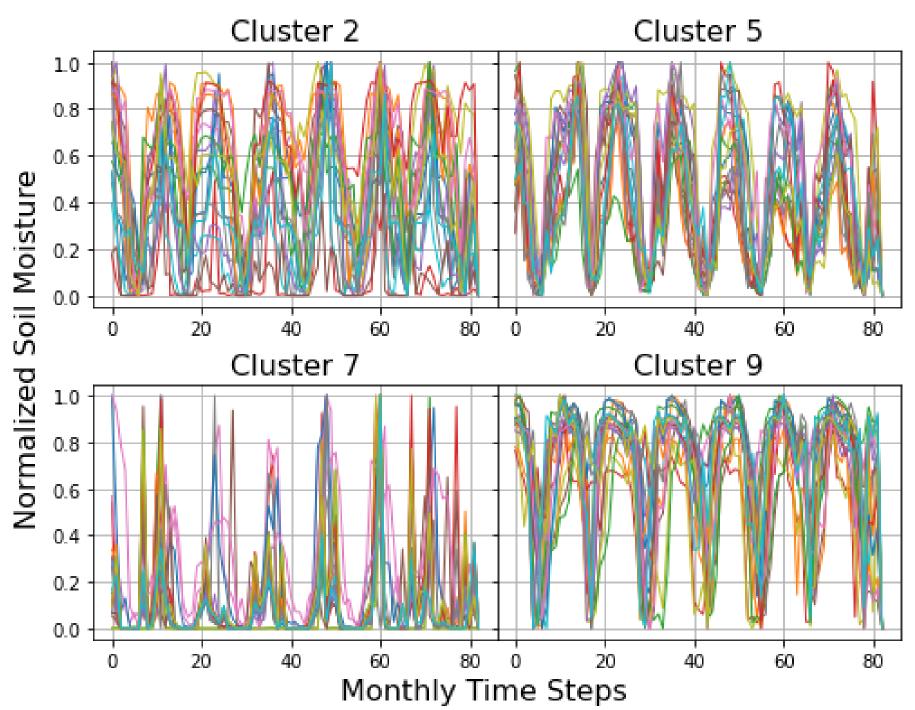
Use total loss to update parameters of MPNN.

Pilot Site

Layout of the Mid-Atlantic basin along with its stream network and HUC12 watersheds.

New Yorl Pennsylvania West Virginia → HUC2- region 02 Mid Atlantic Region △ HUC12 watershed boundaries \sim Water channels State boundaries 300 [¬]Kilometers

Plot of true soil moisture values of 20 randomly subsampled HRUs in selected clusters. Soil moisture in different clusters exhibits distinct seasonal trend.



TGCN model performance

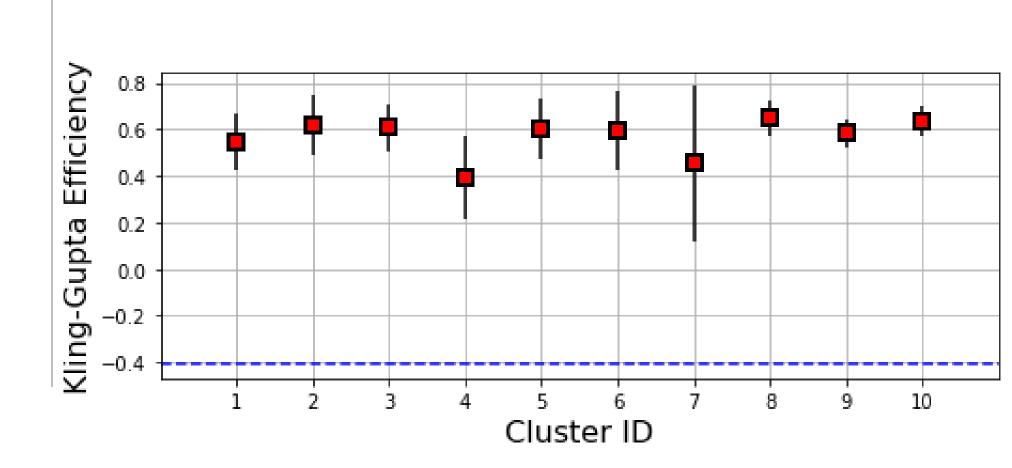
Cluster ID	LSTM MSE	C+TGCN MSE	Relative MSE Reduction			
1	0.3433	0.0549	82.93%			
2	0.3815	0.0573	73%			
3	0.3588	0.0522	Jo.06%			
4	0.3057		79.60%			
5	0.3677	$-t_10_1$	86.06%			
6	0.400	JU J.0543	86.19%			
7		0.0417	94.29%			
8 9	J. 10	0.0393	91.10%			
9	0.4227	0.0560	87.42%			
10	0.3847	0.0591	83.43%			

Captures dynamic properties of soil moisture

-

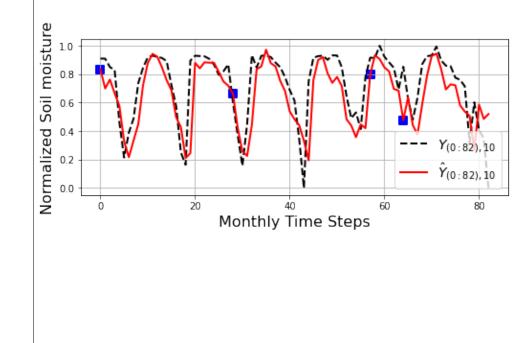
-

-LSTM model by ~80%



High Goodness-of-fit measure (KGE ~ 0.6)

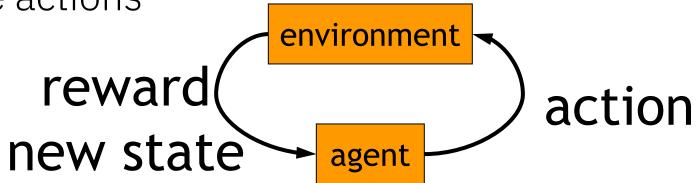
Outperforms classic

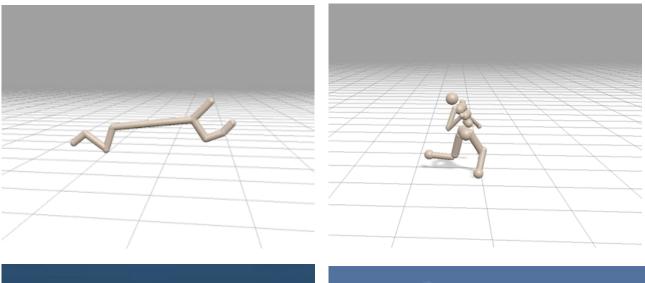


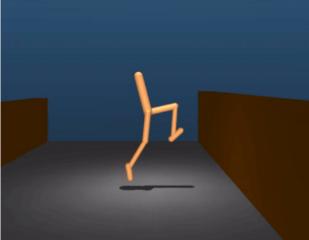
Hitchhiker's Guide to Reinforcement Learning

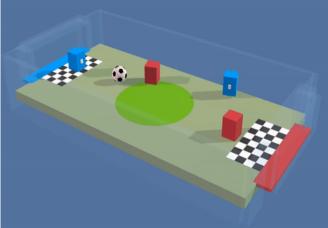
RL involves a decision-making agent interacting with a virtual environment

- environments often abstract real-world models
- maximize a cumulative reward by selecting actions that achieve a certain outcome
- agent balances exploring new actions and exploiting past effective actions









Images from <u>Google AI</u>, <u>DeepMind</u> & <u>endtoend.ai</u>

Objective

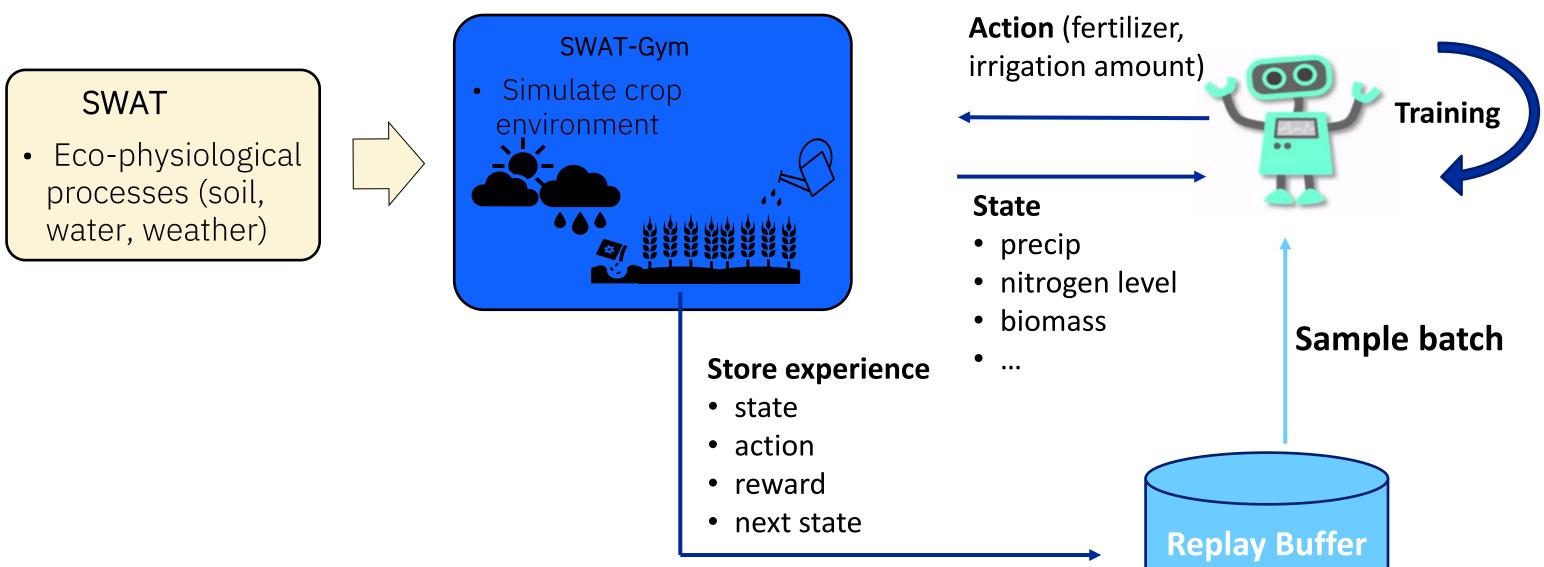
A decision support system to aid farmers increase crop yields while minimizing use of inputs e.g., fertilizer and irrigation



Recommend optimal farm inputs based on Reinforcement Learning.

- 1. Simulate crop growth using the Soil & Water Assessment Tool (SWAT)
- 2. Implement various decision-making strategies:
 - standard farming practice,
 - reactive strategy,
 - deep deterministic policy gradient (DDPG)

Reinforcement Learning **Agent-Environment Interface**



SWATGym Variables

Inputs

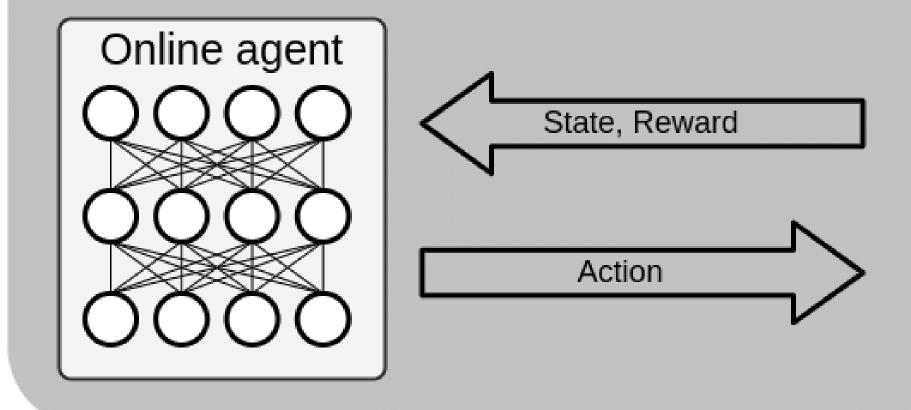
- Location
- Simulation duration
- Solar radiation
- Avg air temperature
- Precipitation
- Reference evapotranspiration
- Fertilizer
- Irrigation

SWAT Dynamics

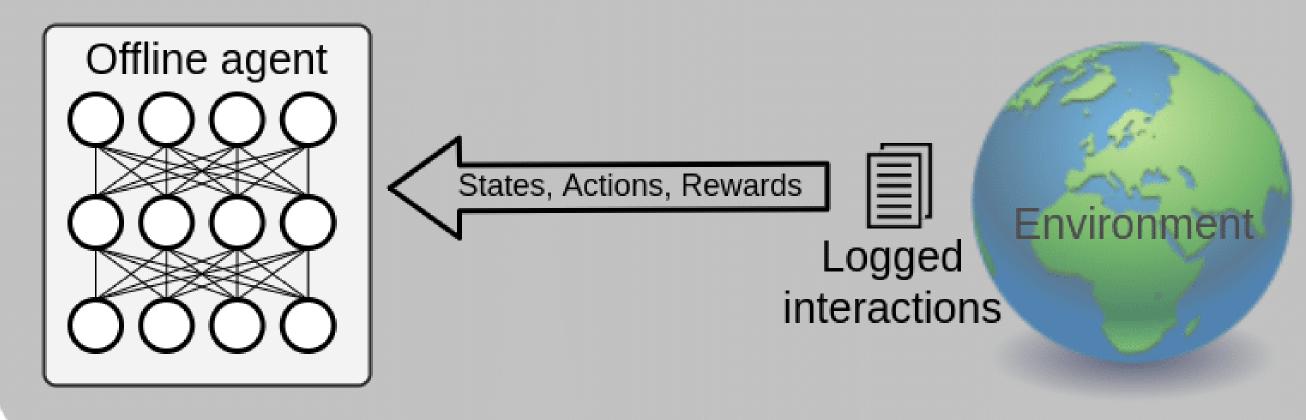
- Radiation Use Efficiency
- Heat units
- Canopy height
- Leaf area index
- Root development
- Evapotranspiration
- Cumulative biomass
- Soil water balance
- Nutrient balance
- Growth stress factors

Output Yield

Reinforcement learning with online interactions



Offline reinforcement learning



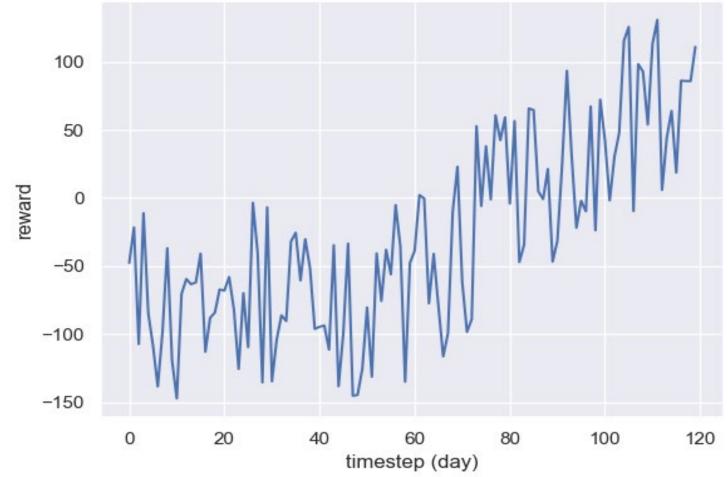
Example with Random policy

- At each time step $s \in S$, agent:
 - receives state s of the env
 - selects an action $a \in A$ to take
 - a reward $R_a(s, s')$ encapsulating evaluating action environment transitions to a new state

from swat_env import SWATEnv

break

```
env = SWATEnv()
# env = gym.make('SWATGym')
state, reward, done, info = env.reset()
rewards = []
max_timesteps = 120
for t in range(max_timesteps):
    action = env.action_space.sample()
    observation, reward, done, info = env.step(action)
    rewards.append(reward)
    if done:
        print(f"Success! Episode finished after {t+1} timesteps")
```



Markov Decision Process (MDP):

• Set of states S, set of actions A, transition model P(s, a, s'), reward function R(s, a)

Standard Practice Applies 3 apps. of 60 kg N/ha and 25 mm H20/ha

Reactive Agent

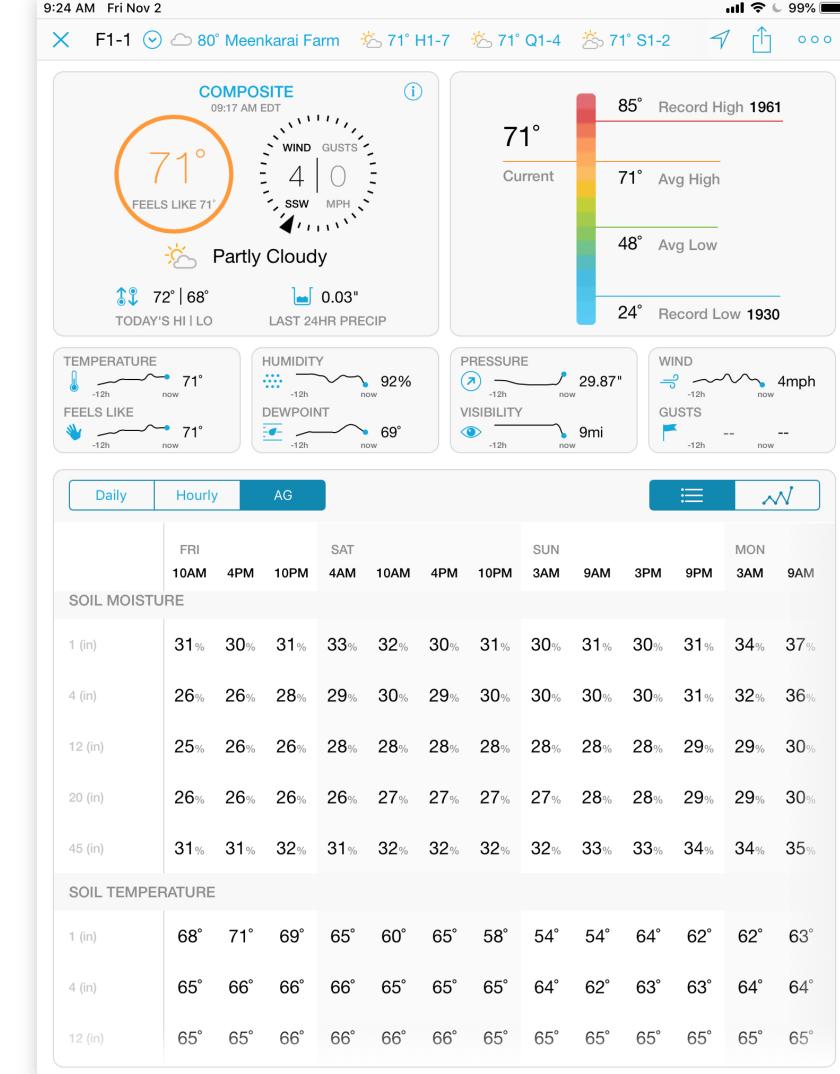
Applies 120 kg/ha when N drop below 5kg/ha and 50mm SW below 25 mm/ha

Decision-making Agents

Deep Deterministic Policy Gradient [5] Learns policy to optimally select N and H20 amounts

Conclusions

- Machine Learning can provide unprecedented • degree of insight into soil health
- Critical that AI algorithms are adapted to the spatiotemporal properties of geophsysical systems
- Accurate estimation of soil properties critical • to improved decision making
- Unsupervised learning and human-centered AI can accelerate evidence-based decision making in agriculture



ul Ś 99%

<i>y</i>	Hourly		AG						\sim				
OISTU	FRI 10AM	4PM	10PM	SAT 4AM	10AM	4PM	10PM	SUN 3AM	9AM	3PM	9PM	MON 3AM	9AM
	31%	30%	31%	33%	32%	30%	31%	30%	31%	30%	31%	34%	37%
	26%	26%	28%	29%	30%	29%	30%	30%	30%	30%	31%	32%	36%
	25%	26%	26%	28%	28%	28%	28%	28%	28%	28%	29%	29%	30%
	26%	26%	26%	26%	27%	27%	27%	27%	28%	28%	29%	29%	30%
	31%	31%	32%	31%	32%	32%	32%	32%	33%	33%	34%	34%	35%
MPE	MPERATURE												
	68°	71°	69°	65°	60°	65°	58°	54°	54°	64°	62°	62°	63°
	65°	66°	66°	66°	65°	65°	65°	64°	62°	63°	63°	64°	64°
	65°	65°	66°	66°	66°	66°	65°	65°	65°	65°	65°	65°	65°

Related Publications:

- 1) Malvern Madondo, et. al. "A Reinforcement Learning Framework Built Within a SWAT Model Physical Environment to Inform Crop Management" American Geophysical Union Fall Meeting, December 11–17, https://www.agu.org/fallmeeting (2022).
- 2) Muneeza Azmat, et. al. "Forecasting Soil Moisture Using **Domain-Inspired Temporal Graph Convolution Neural** Networks to Guide Sustainable Crop Management." IJCAI, August 19–25 (2023). <u>https://arxiv.org/abs/2212.06565</u>
- 3) Malvern Madondo, et. al. "A SWAT based Reinforcent Learning Framework for Crop Management" AAAI'23 AI 4 Social Good Workshop February 11–17, 2023. PrePrint

