

Christian-Albrechts-Universität zu Kiel

SWAT Conference 26-30, June 2023 in Aarhus, Denmark

Modeling of herbicide losses in a tile drainage-dominated small catchment and at field level with SWAT+

PhD-project at Kiel University Anne-Kathrin Wendell, K. Bieger, B. Guse, P. Wagner, J. Kiesel, U. Ulrich, N. Fohrer

Impacts of herbicide on freshwater ecosystems

Pollution status of lentic small water bodies (LSWB)

Ulrich et al. 2021

General information about the catchment

(Pesticide Properties DataBase (PPDB), University of Hertfordshire 2022)

Model information

Model structure

- Tile drains (TD): 30 m buffer zone
- SWAT+ 60.5.4 (groundwater mixing factor of pesticides is added (Rathjens et al. 2023))

Model evaluation

Calibration of hydrology and pesticides: manual

	Hydrology	Pesticide	
Calibration	Even months	Every second week	
Validation	Uneven months	Every first week	
Reasons	Changing weather conditions	Few applications under changing conditions	

• Model results field scale: plausibility check

Hydrology

°T Lo

□___o

[]

 (\mathcal{W})

Results

Model results for hydrology

16.05.2023

Mobile pesticides

°] Lo

₽٦,₀

[]

Results

Calibration uneven weeks: NSE: 0.52, PBIAS: -1.7, KGE: 0.74 (r: 0.75, alpha: 0.94, beta: 0.98)
 Validation even weeks: NSE: 0.52, PBIAS: -18.7, KGE: 0.56 (r: 0.73, alpha: 0.81, beta: 0.81)

ļ

Underestimating the low flow loads at the dry years

ļ

Overestimating the peak loads at the dry years

ļ

Modelling of flufenacet at catchment scale

Underestimating the peak loads at the wet year

ļ

Overestimating the peak loads at the dry years

ζ₿

Underestimating the peak loads at the wet year

ᠺ᠘

Field scale losses of flufenacet and one transformation product

Field scale losses of flufenacet and one transformation product

Non-mobile pesticides

°] Lo

₽٦,₀

[]

Results

Model results for the non-mobile pesticides diflufenican and pendimethalin

Γ٦

Model results for the non-mobile pesticides diflufenican and pendimethalin

Increase of underestimation with increase of non-mobility

The temporal dynamics of the peak loads are maintained

°] Lo

ΩŶ

٦_

ļ

Modelling of diflufenican and pendimethalin at field scale

Massive underestimation at the tile drainage outlet during the dry winter of 2016/2017

Transport pathways of pesticides

- Mobile pesticides are mainly transported due to lateral and tile flow
- Non-mobile pesticides are transported by surface runoff
- Subsurface transport of nonmobile pesticides having low impact for pesticides discharge

Conclusion

What SWAT+ is good at

What SWAT+ is not good at

The modelling of **mobile** pesticides and their transformation products can be represented with **good model quality**.

With increasing affinity of the pesticides for **particle transport**, the ability of the model to represent this is **decreasing**.

Subsurface transport of non-mobile pesticides under dry conditions is systematically underestimated in the model.

ΩŶ

(W)

Conclusion

Thank you for your attention

awendell@hydrology.uni-kiel.de

Approval procedure via FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use)

Step 1	Step 2	Step 3	Step 4
One-time losses after application	Losses based on a temporal application pattern of pesticides	Losses through drift, runoff, erosion & tile drainage via "Realistic worst Case-scenarios"	Takes into account the impact of mitigation measures
↓ ↑↓↓↓	Specific scenario descriptions are missing	 →4 R-szenarien →6 D-szenarien Models: PRZM, MACRO & TOXSWA 	

Maximum glyphosate concentration in freshwater systems and maximum allowed values

Pesticides are often exciding the legal limits in freshwater systems

Brovini, E.M., Cardoso, S.J., Rabelo Quadra, G., Vilas-Boas, J.A., Paranaíba, J.R., de Oliveira Pereira, R., Fernandes Mendonça, R. (2021): Glyphosate concentrations in global freshwaters: are aquatic organisms at risk?. Environmental Science and Pollution Research volume 28, p. 60635–60648.