Evaluating field- and watershed -scale water quality benefits of agricultural conservation practices in the Maumee River watershed using a high-resolution SWAT model

Anna Apostel¹, Margaret Kalcic¹, Jay Martin², Asmita Murumkar², Vinayak Shedekar², Kevin Czajkowski³, Kimberly Panozzo³, Kevin King³

July 10th, 2024

Session B2: Agricultural and Climate Change Scenarios for a Sustainable Future

1.University of Wisconsin-Madison 2.Ohio State University 3. University of Toledo 4. USDA ARS

Outline for today's talk

- **Background on Lake Erie Algal Blooms and mitigation efforts**
- **Maumee River watershed (MRW) SWAT model development**
- **Best Management Practice (BMP) scenario development, validation, and preliminary results**

Acknowledgements

Fig. 5 The Ohio State University

- Jay Martin
- Asmita Murumkar
- Vinayak Shedekar
- **Haley Kujawa**
- **Nichael Brooker**
- **University of Wisconsin-Madison**
	- **Nargaret Kalcic**
	- Anna Apostel
	- **E** Lourdes Arrueta

University of Toledo

- Kevin Czajkowski
- Kimberly Panozzo
- **I** Ishfaq Rahman

USDA-ARS

- \blacksquare Kevin King
- **Maumee Watershed Modeling Stakeholder Advisory group**

Department of

Higher Education

Harmful algal blooms prominent issue in Laurentian Great Lakes ~20% of the world's freshwater

NOAA GLERL https://www.glerl.noaa.gov/

A Lake Erie Harmful Algal Bloom (HAB)

Harmful Algal Blooms (HABS) more severe since 1995 Blooms largely caused by Phosphorus (P), DRP doubled since 1995 Maumee River contributes 50% of Phosphorus & drives Lake Erie HABs Maumee River watershed >75% agriculture

A Lake Erie Harmful Algal Bloom (HAB)

2014 Toledo water crisis

• *Half a million* people without potable water for 3-days

Harmful Algal Books (MABS) more severe since 1995 Blooms largely caused by Phosphorus, DRP doubled since 1995 Maumee River contributes 50% of Phosphorus & drives Lake Eric HABs

The New Hork Times

Tap Water Ban for Toledo Residents

Maumee River watershed >75% agriculture

Binational agreement – phosphorus loading targets for Lake Erie

- New targets based on lake modeling are more nuanced
- Reaching targets requires agricultural conservation

Great Lakes Water Quality greement

OLD TARGET

 \Box

NEW TARGETS

**to be met 9 years out of 10 ** flow weighted mean*

P = Phosphorus

TP = Total Phosphorus

DRP = Dissolved Reactive Phosphorus

Maumee River Watershed SWAT model

- 4th SWAT 2012 model iteration of the Maumee watershed in the research group
- Near-field level resolution:
	- Smallest land unit (HRU) averages ~70 acres in size
	- Improved spatial representation of management practices
	- Spatially continuous field $units$ Apostel et al. (2021)

Identification of agricultural practices using remote sensing and *in situ* field data

Improvements in fertilizer application and management

Soil Test Phosphorus **Model initialize labile P**

- STP values are represented through the SOL_SOLP parameter \rightarrow Soil labile P (mg/kg)
- Soil labile P values were applied based on a county-bycounty distribution of STP data in the region (Dayton et al., 2020)
- Soil stratification was implemented based on Baker et al (2017) stratification results from the Sandusky River Basin to model impacts of tillage reduction and increased stratification

- Non-floodplain wetlands represented through modified pothole representation (Evenson et al., 2023):
	- SWAT 2012 rev 659
	- Modified pothole representation to mirror wetland impacts on all nutrient forms, not only nitrate and DRP
	- Added the capability of tile effluent to routed through an HRU wetland
- Wetland placement using National Wetland Inventory Data
- Wetland parameterization
	- N and P removal efficiencies based on regional literature review of wetland effectiveness

Calibration and Validation

- Instream calibration and validation sites:
	- o Yellow calibration sites were used for calibration (2007-2021) and back validation (2002-2006).
	- o Pink validation sites were only used for validation (2007-2021).
- Field-level validation:
	- oUSDA-ARS Soil Drainage Research Unit (Williams et al., 2016)
	- oOSU edge-of-field monitoring networks (Brooker et al., 2021)

Calibration/Validation Results

- *Watershed outlet*: Very good performance
- *Other calibration gages:* Good performance for discharge, mixed nutrient performance
- *Validation stream gages*: Good performance for Discharge and DRP, mixed TP performance
- *Edge-of-field*: Reasonable predictions (significant correlation relationship, tendency to over-predict)

Field level loading results per soil test values

Scenario Development

• Stakeholder led scenario development

- Scenarios developed with guidance from Ohio agency personnel to evaluate individual practices and mitigation program implementation
- Reviewed by the Maumee Watershed Modeling Stakeholder Advisory group

Sensitivity Scenarios: Implementation

***Percentage of acres impacted by practice*

Sensitivity Scenarios: Field-level Results

Sensitivity Scenarios: Watershed Results

Outlet Flow Weighted Mean Concentration. Numbers to the right of the bars are the percent change from baseline rounded to the nearest whole number.

Bundled Scenarios: Implementation

Bundled practice scenarios

**Manure percentages calculated as a percent of manure fields*

***Drainage water management implemented as a number of structures*

****Values over 100% possible because of stacked practices*

Bundle Scenarios: Watershed Results

Key Messages

- Models like SWAT are a critical tool in the evaluation and adaptive guidance of programs targeting land management improvements
- When guiding policy, effectively validating at the implementation scale is needed
- Guided stakeholder modeling helps assess true policy concerns while uncovering innovation needs within the model

Thank you for listening!

Contact: Anna Apostel - apostel@wisc.edu

Acknowledgements

Scenario Results: Management Sensitivities

SCENARIO IMPLEMENTATION:

- Application rates of N and P fertilizer were modified to followed tri-state recommendations based on the fields soil test phosphorus value.
- *Baseline: 50%, Scenario Implementation rate: 100%*
	- o *Resulted in 10% reduction in P fertilizer across watershed*
- *Maumee watershed DRP reduction: 5%, TP reduction: 2%*

Scenario Results: Management Sensitivities

SCENARIO IMPLEMENTATION:

- Application of N and P was changed to subsurface application (default is broadcast or broadcast with tillage incorporation)
- *Baseline: 10%, Scenario Implementation rate*: 23%
- Maumee watershed DRP reduction: 8%, TP reduction: 2%

SCENARIO IMPLEMENTATION: Scenario Results: Management Sensitivities

- Liquid manure was immediately incorporate when applied to a field.
- *Baseline: 60%, Scenario Implementation rate*: 70% (on manure only fields)
- Maumee watershed DRP reduction: 2%, TP reduction: 1%

SCENARIO IMPLEMENTATION: Scenario Results: Management Sensitivities

Agricultural

Cover crops

HRU changed for scenario

HRUs

- Winter rye was planted over winter after a corn or soybean harvest. If alfalfa or winter wheat was already in the rotation, no cover crop was added that year.
- *Baseline: 10%, Scenario Implementation rate*: 30%
- Maumee watershed DRP reduction: 1%, TP reduction: 1%

Scenario Results: Management Sensitivities

SCENARIO IMPLEMENTATION:

- Drainage water management was applied to tile drained fields.
- *Baseline: 215 structures, Scenario Implementation*: *1909 structures*
- *Maumee watershed DRP increase: <1%, TP increase: <1%*

Scenario Results: Management Sensitivities**SCENARIO IMPLEMENTATION: Edge-of-field buffers**

- Edge-of-field buffers of varying effectiveness were implemented across the watershed.
- *Baseline: 35%, Scenario Implementation rate*: 49%
- Maumee watershed DRP reduction: 1%; TP reduction:1%

SCENARIO IMPLEMENTATION: Scenario Results: Management Sensitivities

- Wetlands were implemented on tile drained fields with the specifications the 1.5% of the field would be taken out of production and 25% of the tile effluent would be routed through the wetland.
- *Baseline: 20%, Scenario Implementation rate*: 30%
- Maumee watershed DRP reduction: 2%; TP reduction: 2%

 -20

 -10

 -10

-20

Change from baseline (%)

Phosphorus reductions in fields where practice applied

RACIDEEERS

Reference for BMP lit review

1.Dougherty BW, PedersonCH, Mallarino AP, Andersen DS, Soupir ML, KanwarRS, et al. Midwestern cropping system effects on drainage water quality and crop yields. J Environ Qual. 2020 Jan;49(1):38–49. 2.Griffith KE, Young EO, Klaiber LB, Kramer SR. Winter Rye Cover Crop Impacts on Runoff Water Quality in a Northern New York (USA) Tile-Drained Maize Agroecosystem. Water Air Soil Pollut. 2020 Feb 13;231(2):84. 3.Hanrahan BR, Tank JL, Christopher SF, Mahl UH, Trentman MT, Royer TV. Winter cover crops reduce nitrate loss in an agricultural watershed in the central U.S. Agric Ecosyst Environ. 2018 Oct;265:513–23. 4. Hanrahan BR, King KW, Duncan EW, Shedekar VS, Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA, J Environ Manage, 2021 Sep 1:29 5.Hanrahan BR, Tank JL, Speir SL, Trentman MT, Christopher SF, Mahl UH, et al. Extending vegetative cover with cover crops influenced phosphorus loss from an agricultural watershed. Sci Total Environ. 2021Dec;801:149501. 6. Kleinman PJA, Salon P, Sharpley AN, Saporito LS, Effect of cover crops established at time of corn planting on phosphorus runoff from soils before and after dairy manure application, J Soil Water Consery, 2005 Dec:60(6) 7.KovarJ l., Moorman T b., Singer J w., Cambardella C a., Tomer M d. Swine Manure Injection with Low-Disturbance Applicator and Cover Crops Reduce Phosphorus Losses.J Environ Qual. 2011;40(2):329–36. 8.Liu J, Macrae ML, Elliott JA, Baulch HM, Wilson HF, Kleinman PJA. Impacts of Cover Crops and Crop Residues on Phosphorus Losses in Cold Climates: A Review. J Environ Qual. 2019;48(4):850–68. 9.3909:100232. 9. 9. Hanrahan BR, King KW, Rumora KR, Stinner JH. Contrasting the influence of crop rotation on phosphorus balances and losses in agricultural fields across a tile-drained landscape in Ohio, USA. J Gt Lakes 10.Grenon G, Madramootoo CA, Von Sperber C, Ebtehaj I, Bonakdari H, Singh B. Nutrient release in drainage discharge from organic soils under two different agricultural water management systems. Hydrol Process. 2023 Aug;37(11. Mitchell ME, Newcomer-Johnson T, Christensen J, Crumpton W, Dyson B, Canfield TJ, et al. A review of ecosystem services from edge-of-field practices in tile-drained agricultural systems in the United States Corn Belt R 12-3:106501. 12-3:106501. Talker and Fitch Schools and KR, Soboyejo ABO, Kalcic MM, et al. Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches. Agric 13.TanCS, Zhang TQ. Surface runoff and sub-surface drainage phosphorus losses under regular free drainage and controlled drainage with sub-irrigation systems in southern Ontario.Can J Soil Sci. 2011 Jun;91(3):349–59. 14.Kieta KA, Owens PN, Lobb DA, Vanrobaeys JA, Flaten DN. Phosphorus dynamics in vegetated buffer strips in cold climates: a review. Environ Rev. 2018 Sep;26(3):255–72. 15.Lee KH, Isenhart TM, Schultz RC, Mickelson SK. Multispecies RiparianBuffers Trap Sediment and Nutrients during Rainfall Simulations. J Environ Qual. 2000;29(4):1200–5. 16.1110210. T6. Prosser RS, Hoekstra PF, Gene S, Truman C, White M, Hanson ML. A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. J 17.Sheppard SC, Sheppard MI, Long J, Sanipelli B, Tait J. Runoff phosphorus retention in vegetated field margins on flat landscapes.Can J Soil Sci. 2006 Nov;86(5):871–84. 18.Singh G, Kaur G, Williard K, Schoonover J, Nelson KA. Managing Phosphorus Loss from Agroecosystems of the Midwestern United States: A Review. Agronomy. 2020 Apr;10(4):561. 19.Wang J, Qi Z, WangC. Phosphorus loss management and crop yields: A global meta-analysis. Agric Ecosyst Environ. 2023 Nov 1;357:108683. 20.Daverede IC, Kravchenko AN, Hoeft RG, Nafziger ED, Bullock DG, Warren JJ, et al. Phosphorus Runoff from Incorporated and Surface-Applied Liquid Swine Manure and Phosphorus Fertilizer. J Environ Qual. 2004;33(4):1535–44. 21.Gildow M, Aloysius N, Gebremariam S, Martin J. Fertilizer placement and application timing as strategies to reduce phosphorus loading to Lake Erie. J Gt Lakes Res. 2016 Dec 1;42(6):1281–8. 22.Kimmell R j., Pierzynski G m., Janssen K a., Barnes P l. Effects of Tillage and Phosphorus Placement on Phosphorus Runoff Losses in a Grain Sorghum–SoybeanRotation.J Environ Qual. 2001;30(4):1324–30. 23.Allen BL, Mallarino AP. Effect of Liquid Swine Manure Rate, Incorporation, and Timing of Rainfall on Phosphorus Loss with Surface Runoff. J Environ Qual. 2008;37(1):125–37. 24.Jahanzad E, Saporito LS, Karsten HD, Kleinman PJA. Varying Influence of Dairy Manure Injection on Phosphorus Loss in Runoff over Four Years. J Environ Qual. 2019;48(2):450–8. 25.Jokela W, Sherman J, CavadiniJ. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods. J Environ Qual. 2016;45(5):1672–9. 26.KaiserDE, Mallarino AP, Haq MU, Allen BL. Runoff Phosphorus Loss Immediately after Poultry Manure Application as Influenced by the Application Rate and Tillage. J Environ Qual. 2009;38(1):299–308. 27.Little JL, Bennett DR, Miller JJ. Nutrient and Sediment Losses Under Simulated Rainfall Following Manure Incorporation by Different Methods. J Environ Qual. 2005;34(5):1883–95. 28.Schuster N, Bartelt-Hunt SL, Durso L, Gilley J, Li X. Runoff Water Quality Characteristics Following Swine Slurry Application under Broadcast and Injected Conditions. Trans ASABE. 2017 Feb 17;60(1):53–66. 29.20149(3):735-44. [5] 29.0 crumpton WG, Stenback GA, Fisher SW, Stenback JZ, Green DIS, Water quality performance of wetlands receiving nonpoint-source nitrogen loads; Nitrate and total nitrogen removal efficiency and co 30.Kadlec RH. Large Constructed Wetlands for PhosphorusControl: A Review. Water. 2016 Jun;8(6):243. 31.KovacicDA, David MB, Gentry LE, Starks KM, Cooke RA. Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage.J Environ Qual. 2000;29(4):1262–74. 32.KovacicDA, Twait RM, Wallace MP, Bowling JM. Use of created wetlands to improve water quality in the Midwest—Lake Bloomington case study. Ecol Eng. 2006Dec 1;28(3):258–70. 33.Lemke AM, Kirkham KG, Wallace MP, VanZomeren CM, Berkowitz JF, Kovacic DA, Nitrogen and phosphorus removal using tile-treatment wetlands: A 12-year study from the midwestern United States, J Environ Oual, 2022:51(5):797 34.S. Smith A, Jacinthe PA. A mesocosm study of the effects of wet–dry cycles on nutrient release from constructed wetlands in agricultural landscapes. Environ Sci Process Impacts. 2014;16(1):106–15.

Daily outlet and upstream calibration results

Daily upstream validation at calibration sites (2002-2006)

Daily upstream validation results – noncalibration gages (2007-2021)

A brief history of pollution and mitigation efforts in Lake Erie

