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Outline  for today’s talk

• Background on Lake Erie Algal Blooms and mitigation efforts
• Maumee River watershed  (MRW) SWAT model development 
• Best Management Practice (BMP) scenario development, validation, 

and preliminary results
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Harmful algal blooms prominent issue in Laurentian Great Lakes 
~20% of the world’s freshwater

NOAA GLERL https://www.glerl.noaa.gov/



A Lake Erie Harmful Algal Bloom (HAB)

Harmful Algal Blooms (HABS) more severe since 1995
Blooms largely caused by Phosphorus (P), DRP doubled since 1995

Maumee River contributes 50% of Phosphorus & drives Lake Erie HABs 
Maumee River watershed >75% agriculture 



A Lake Erie Harmful Algal Bloom (HAB)

Harmful Algal Blooms (HABS) more severe since 1995
Blooms largely caused by Phosphorus, DRP doubled since 1995

Maumee River contributes 50% of Phosphorus & drives Lake Erie HABs 
Maumee River watershed >75% agriculture 

2014 Toledo water crisis
• Half a million people 

without potable water 
for 3-days



1970s-2015; Annual All Lake Erie
TP Load 11,000 MT

2016-present; 
March-July

Maumee 
River

Western 
Lake Erie

DRP Load* 186 MT 40% of 2008
TP Load* 860 MT 40% of 2008

DRP Concentration** 0.05 mg/L
TP Concentration** 0.23 mg/L 

OLD TARGET

NEW TARGETS

*to be met 9 years out of 10 ** flow weighted mean

P = Phosphorus
TP = Total Phosphorus
DRP = Dissolved Reactive Phosphorus

Binational agreement – phosphorus loading targets for Lake Erie

• New targets based on lake modeling are more nuanced
• Reaching targets requires agricultural conservation



• 4th SWAT 2012 model 
iteration of the Maumee 
watershed in the research 
group

• Near-field level resolution:
• Smallest land unit (HRU) 

averages ~70 acres in size
• Improved spatial 

representation of 
management practices

• Spatially continuous field 
units Apostel et al. (2021)

Maumee River Watershed SWAT model
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Identification of agricultural practices using 
remote sensing and in situ field data



Crop 
Rotations

• Based on 
remote 
sensing data

• Corn, 
Soybean, 
Winter Wheat, 
alfalfa 
rotations

Soil Test 
Phosphorus

• County level STP 
distributions 
used to apply a 
heterogeneous 
representation 
of soil P values

Manure

• Locations of 
permitted and 
unpermitted 
facilities (EWG, 
2022)

• Kast et al 2020 
allocations

• Applied according 
to STP values and 
crop needs

Inorganic 
Fertilizer

• County level 
rates of N and 
P scaled to 
meet plant 
needs

• Applied to field 
where manure 
does not meet 
plant needs

Additional linked 
practices

• Subsurface 
application

• Tillage 
practices 
(remote 
sensing)

• Cover crops 
(remote 
sensing)

Improvements in fertilizer application and 
management



• STP values are represented through the SOL_SOLP 
parameter  Soil labile P (mg/kg)

• Soil labile P values were applied based on a county-by-
county distribution of STP data in the region (Dayton et 
al., 2020)

• Soil stratification was implemented based on Baker et al 
(2017) stratification results from the Sandusky River Basin 
to model impacts of tillage reduction and increased 
stratification

Agricultural HRUs
Labile P Mehlich-3

0-5 cm (0-1.9 in) 31.02 62.49

5-20 cm (1.9-7.8 in) 18.38 32.01

Soil Column Average 21.54 39.63

0-5 cm

5-20 cm

5 mg P/ kg soil 200 mg P/ kg 
soil

Model initialize labile PSoil Test Phosphorus



• Non-floodplain wetlands represented through 
modified pothole representation (Evenson et al., 2023):

• SWAT 2012 rev 659 
• Modified pothole representation to mirror wetland impacts on all 

nutrient forms, not only nitrate and DRP
• Added the capability of tile effluent to routed through an HRU 

wetland 

• Wetland placement using National Wetland Inventory 
Data

• Wetland parameterization
• N and P removal efficiencies based on regional literature review of 

wetland effectiveness 

HRU containing a fraction of wetland
Agricultural row crop HRUsWetlands



Calibration and Validation

• Instream calibration and 
validation sites:
o Yellow calibration sites were 

used for calibration (2007-2021) 
and back validation (2002-2006).

oPink validation sites were only 
used for validation (2007-2021).

• Field-level validation:
oUSDA-ARS Soil Drainage Research 

Unit (Williams et al., 2016)
oOSU edge-of-field monitoring 

networks (Brooker et al., 2021)



Calibration/Validation Results

• Watershed outlet: Very good 
performance

• Other calibration gages: Good 
performance for discharge, mixed 
nutrient performance 

• Validation stream gages: Good 
performance for Discharge and DRP, 
mixed TP performance

• Edge-of-field: Reasonable predictions 
(significant correlation relationship, 
tendency to over-predict)

Field level loading results per soil test values



• Stakeholder led scenario development
• Scenarios developed with guidance from Ohio agency personnel to 

evaluate individual practices and mitigation program implementation
• Reviewed by the Maumee Watershed Modeling Stakeholder Advisory 

group

Scenario Development



Management Practice Implementation
% of all row crop acres in model

Baseline Scenario
Tri-state Recommended 
Application Rates*

N and P rates modified to follow application guidance based on 
soiling testing 50% 100%

Subsurface Nutrient 
Application

Broadcast fields targeted and modified to receive subsurface 
inorganic nutrient application 10% 23%

Manure Incorporation Liquid manure immediately incorporated after application 12% 18%

Cover Crops Winter rye planted over winter following a corn or soybean 
harvest 10% 30%

Drainage Water 
Management**

Depth to tile drain modified throughout year following 
management guidance 1% 9%

Edge-of-field Buffers** EOF buffers added at varying efficiencies 35% 49%

Wetlands**
Wetlands implemented on tile drained fields with the guidance 
of 1.5% of field being removed from production and 25% of tile 
effluent would be routed through wetland 20% 30%

*Resulted in 5% reduction in P fertilizer across watershed, 10% on changed fields
**Percentage of acres impacted by practice 

Sensitivity Scenarios: Implementation



Sensitivity Scenarios: Field-level Results
Phosphorus reductions in fields where practice applied

Tristate Application Recommendations

Subsurface Nutrient Application

Manure Incorporation

Cover Crops

Drainage Water Management

Edge-of-field Buffers

Wetlands

Literature values of in-field 
practice benefit assessment

Change from Baseline (%)



Sensitivity Scenarios: Watershed Results
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Bundled practice scenarios

Management Practice Baseline Bundle 1 Bundle 2 Bundle 3
Tri-state Recommended Application Rates 50% 87% 100% 100%
Subsurface Nutrient Application 10% 16% 19% 36%
Manure Incorporation* 12% 14% 15% 20%
Cover Crops 10% 17% 19% 39%
Drainage Water Management** 1% 2% 3% 4%

*Manure percentages calculated as a percent of manure fields
**Drainage water management implemented as a number of structures
***Values over 100% possible because of stacked practices

Bundled Scenarios: Implementation

% acres impacted above baseline - 53% 73% 116%***



Bundle Scenarios: Watershed Results
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Key Messages

• Models like SWAT are a critical tool in the evaluation and adaptive 
guidance of programs targeting land management improvements

• When guiding policy, effectively validating at the implementation 
scale is needed 

• Guided stakeholder modeling helps assess true policy concerns while 
uncovering innovation needs within the model



Thank you for listening!

Contact: Anna Apostel - apostel@wisc.edu

Acknowledgements



SCENARIO IMPLEMENTATION:
 Application rates of N and P fertilizer were modified to followed 

tri-state recommendations based on the fields soil test 
phosphorus value.

 Baseline: 50%, Scenario Implementation rate: 100%
o Resulted in 10% reduction in P fertilizer across watershed

 Maumee watershed DRP reduction: 5%, TP reduction: 2%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



SCENARIO IMPLEMENTATION:

 Application of N and P was changed to subsurface application 
(default is broadcast or broadcast with tillage incorporation)

 Baseline: 10%, Scenario Implementation rate: 23%
 Maumee watershed DRP reduction: 8%, TP reduction: 2%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



SCENARIO IMPLEMENTATION:

 Liquid manure was immediately incorporate when applied to a 
field.

 Baseline: 60%, Scenario Implementation rate: 70%  (on manure 
only fields)

 Maumee watershed DRP reduction: 2%, TP reduction: 1%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



SCENARIO IMPLEMENTATION:

 Winter rye was planted over winter after a corn or soybean 
harvest. If alfalfa or winter wheat was already in the rotation, no 
cover crop was added that year.

 Baseline: 10%, Scenario Implementation rate: 30%
 Maumee watershed DRP reduction: 1%, TP reduction: 1%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



SCENARIO IMPLEMENTATION:

 Drainage water management was applied to tile drained fields.

 Baseline: 215 structures, Scenario Implementation: 1909 structures
 Maumee watershed DRP increase: <1%, TP increase: <1%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



SCENARIO IMPLEMENTATION:

 Edge-of-field buffers of varying effectiveness were implemented 
across the watershed.

 Baseline: 35%, Scenario Implementation rate: 49%
 Maumee watershed DRP reduction: 1%; TP reduction:1%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



SCENARIO IMPLEMENTATION:
 Wetlands were implemented on tile drained fields with the 

specifications the 1.5% of the field would be taken out of 
production and 25% of the tile effluent would be routed through 
the wetland.

 Baseline: 20%, Scenario Implementation rate: 30%
 Maumee watershed DRP reduction: 2%; TP reduction: 2%

Agricultural 
HRUs
HRU changed 
for scenario

Phosphorus reductions in fields where practice applied

Scenario Results: Management Sensitivities



Conservation 
practice

DRP change TP change TN change Surface runoff 
change

Subsurface 
discharge 
change

Cover crops (rye) 
(1–8)

Variable 
(-63% to No significant 
difference)

Variable 
(-68% to No significant 
difference)

Decrease 
(30% to 60%)

Variable 
(-46% to No significant 
difference)

No significant 
difference

Crop rotation 
(CSW)
(9)

Increase Increase Decrease

Drainage water 
management
(10–13)

Variable
(-56% to 65%)

Variable 
(-5% to 13%)

Decrease
(9% to 45%)

Increase
(50% to 407%)

Decrease
(8% to 85%)

Edge-of-Field 
Buffers
(17–21)

Decrease 
(12% to 100%)

Subsurface 
fertilizer application
(19–22)

Decrease
(31% to 95%)

Manure 
incorporation
(20,23–28)

Decrease
(63% to 98%)

Decrease 
(59% to 93%)

Wetlands 
(18,29–34)

Decrease
(2% to 100%)

Decrease
(22% to 60%)
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Daily outlet and upstream calibration results

Variable Calibration 
Targets

SWAT Subbasin USGS Site R2 NSE PBIAS Simulated average 
(Observed average)

Simulated standard 
deviation (Observed 
standard deviation)

Discharge
R2 >0.6
NSE > 0.5
PBIAS <±15

59 4193500 (Waterville) 0.71 0.7 10.1 171.76(191.03) 247.73(294.00)
91 4185000 (Tiffin) 0.67 0.66 7.3 10.67(11.50) 16.39(17.49)
208 4189000 (Blanchard) 0.61 0.56 26.2 7.69(10.42) 13.93(23.70)

Total 
Phosphorus

R2 >0.4*
NSE > 0.35*
PBIAS <±30

59 4193500 (Waterville) 0.61 0.57 -10.3 7275.27(6595.56) 14994.19(15342.89)
91 4185000 (Tiffin) 0.59 -6.35 -250.5 865.55(246.97) 2041.65(634.16)
208 4189000 (Blanchard) 0.33 0.11 -43.6 582.30(405.53) 1406.14(1375.71)

Dissolved 
Reactive 
Phosphorus

R2 >0.4*
NSE > 0.35*
PBIAS <±30

59 4193500 (Waterville) 0.69 0.62 -17.1 1791.51(1529.40) 3164.53(2951.90)
91 4185000 (Tiffin) 0.65 0.39 -30.3 85.87(65.91) 181.99(140.40)
208 4189000 (Blanchard) 0.39 0.32 46.7 68.72(128.89) 151.63(347.75)

Total 
Nitrogen

R2 >0.3*
NSE > 0.35*
PBIAS <±30

59 4193500 (Waterville) 0.52 0.45 29.4 73005.52(103353.34) 162713.52(175922.70)
91 4185000 (Tiffin) 0.52 0.24 17.2 4027.31(4863.66) 10181.87(8157.55)
208 4189000 (Blanchard) 0.44 0.38 27.6 3858.01(5331.09) 10358.75(11903.39)

Sediment
R2 >0.4*
NSE > 0.45*
PBIAS <±20

59 4193500 (Waterville) 0.52 0.40 44.6 1345.93(2430.89) 3005.66(7079.28)
91 4185000 (Tiffin) 0.51 0.03 88.4 8.18(70.41) 17.59(230.25)
208 4189000 (Blanchard) 0.29 0 93.8 6.90(110.94) 17.07(546.42)



Daily upstream validation at calibration sites 
(2002-2006)
Variable Targets SWAT Subbasin USGS Site R2 NSE PBIAS

Discharge
R2 >0.6
NSE > 0.5
PBIAS <±15

59 4193500 (Waterville) 0.66 0.65 19.37
91 4185000 (Tiffin) 0.54 0.49 30.54
208 4189000 (Blanchard) 0.28 0.26 28.21

Total 
Phosphorus

R2 >0.4*
NSE > 0.35*
PBIAS <±30

59 4193500 (Waterville) 0.54 0.53 -18.41
91 4185000 (Tiffin) - - -
208 4189000 (Blanchard) - - -

Dissolved 
Reactive 
Phosphorus

R2 >0.4*
NSE > 0.35*
PBIAS <±30

59 4193500 (Waterville) 0.57 0.56 -13.20
91 4185000 (Tiffin) - - -
208 4189000 (Blanchard) - - -

Total 
Nitrogen

R2 >0.3*
NSE > 0.35*
PBIAS <±30

59 4193500 (Waterville) 0.53 0.47 -43.84
91 4185000 (Tiffin) - - -
208 4189000 (Blanchard) - - -

Sediment
R2 >0.4*
NSE > 0.45*
PBIAS <±20

59 4193500 (Waterville) 0.47 0.29 -67.88
91 4185000 (Tiffin) - - -
208 4189000 (Blanchard) - - -



Daily upstream validation results – non-
calibration gages (2007-2021)

Variable Targets Tributary SWAT 
Subbasin

USGS Site R2 NSE PBIAS Simulated Mean (Observed Mean) Simulated Standard Deviation 
(Observed Standard Deviation)

Di
sc

ha
rg

e R2 >0.6
NSE > 0.5
PBIAS <±15

St Joseph 16 4177080 0.63 0.59 -5.03 2.57(2.44) 3.06(3.10)
Tiffin 30 4184500 0.75 0.74 7.79 6.00(6.51) 6.92(9.03)
St Joseph 122 4178000 0.59 0.54 35.32 13.48(20.84) 17.92(24.67)
Maumee 141 4192500 0.75 0.75 11.24 148.39(167.19) 205.93(242.64)
Maumee 257 4183000 0.72 0.70 14.82 51.35(60.28) 65.72(71.05)
Auglaize/Blanchard 260 4188100 0.70 0.70 3.97 11.95(12.44) 19.37(25.27)
Auglaize/Blanchard 286 4186500 0.67 0.67 -2.57 11.27(10.99) 20.14(24.47)

To
ta

l P
ho

sp
ho

ru
s

R2 >0.4*
NSE > 0.35*
PBIAS <±30

St Joseph 16 4177080 0.38 -0.88 -158.45 143.36(55.47) 316.83(192.37)
Tiffin 30 4184500 0.46 -0.60 -166.23 449.44(168.82) 947.86(595.22)
St Joseph 122 4178000 0.56 -1.26 -71.20 822.08(480.18) 1882.55(867.32)
Maumee 141 4192500 0.59 0.53 -9.63 6913.53(6306.11) 13592.41(13565.97)
Maumee 257 4183000 0.56 0.13 -29.50 2687.71(2075.44) 4865.80(3509.59)
Auglaize/Blanchard 260 4188100 0.30 0.16 -18.87 546.01(459.35) 1144.99(1258.47)
Auglaize/Blanchard 286 4186500 0.33 -0.03 -66.57 746.57(448.20) 1703.51(1489.23)

Di
ss

ol
ve

d 
Re

ac
tiv

e 
Ph

os
ph

or
us R2 >0.4*
NSE > 0.35*
PBIAS <±30

St Joseph 16 4177080 0.19 0.18 23.27 8.61(11.21) 17.52(51.14)
Tiffin 30 4184500 0.65 0.62 9.88 25.04(27.79) 50.41(76.21)
St Joseph 122 4178000 0.67 0.52 53.04 68.42(145.68) 134.23(273.02)
Maumee 141 4192500 0.73 0.70 20.11 1369.66(1714.36) 2370.07(3249.25)
Maumee 257 4183000 0.67 0.51 45.91 408.27(754.84) 653.15(1178.07)
Auglaize/Blanchard 260 4188100 0.51 0.42 41.52 79.08(135.22) 148.34(204.37)
Auglaize/Blanchard 286 4186500 0.51 0.45 28.39 88.09(123.02) 180.00(367.70)
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www.ohiohistorycentral.org/w/Cuyahoga_River_Fire?rec=1642

http://news.nationalgeographic.com/

http://1stedition.net/blog/200
7/04/the-lorax-1971.html
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