Estimating the Gross External Damages of Water Pollution in the United States using a national integrated assessment model

Katrin Bieger, D.A. Keiser, T. Andarge, J.G. Arnold, M.M. Hoque, Y. Ji, C.L. Kling, D.J. Phaneuf, N. Shinde, Y.-H. Shr, M.J. White

2024 International SWAT Conference, Strasbourg, France July 10, 2024

THE SOCIAL COST OF WATER POLLUTION

- Nutrient pollution is one of America's most widespread, costly, and challenging environmental problems (USEPA 2024).
- ➤ Water quality is important for outdoor recreation, industrial production, a griculture, housing, commercial fishing, and health.
- The ecosystem services losses from nutrient pollution generate associated social costs that directly a ffect millions of Americans annually.

COST-BENEFIT ANALYSES

- Since 1960, US public and private actors have spent over \$1.9 trillion to abate surface water pollution.
- ➢ Regulations are subject to detailed CBAs.
- Benefit-cost ratio of 20 CBAs analyzed by Keiser et al. (2019): 0.37
- Underestimation of true benefits or overestimation of true costs?
- Current analyses exclude potentially important benefits.

Source: Keiser et al. (2019)

PROJECT

"Measuring the Social Costs of Nutrient Pollution through Integrated Assessment Modeling"

- Funded by USDA-NIFA
- > PI: Da vid A. Ke iser, University of Massa chusetts Amherst
- ▶ 2022-2025
- ➢ <u>Objectives:</u>
 - Provide national-level estimates of water pollution damages
 - Fill a knowledge and policy gap related to evaluating USDA conservation programs

INTEGRATED ASSESSMENT MODELS

- ➢ IAMs combine quantitative descriptions of economic and ecological processes to study environmental problems.
- They connect economic activity with environmental consequences, and ultimately, with valuation.
- They can be used to estimate damages from pollution, but also benefits of pollution reductions

NUTRIENT FATE AND TRANSPORT

- The damages of water pollution depend critically on the location of emissions and the fate and transport of pollutants.
- Marginal changes in loadings into a single watershed affect concentrations throughout hydrological network.
- Accounting for the linkages from sources to all downstream impacted users is critical to obtaining a full measure of the benefits of water quality improvements.

NATIONAL AGROECOSYSTEMS MODEL

A highly detailed national modeling framework developed to predict the effects of a griculture on the environment (86,000 Landscape Units (HUC12), 4 Million Fields, 7.5 Million HRUs)

SWIFT

- SWAT+ routing structure (connect files, channel and reservoir inputs)
- Average annual routing considering bank and bed erosion, floodpla in deposition, reservoir trapping efficiency
- Model with 10,000 HRUs runs in 10 seconds
- Efficient tool for scenario analyses
- SWAT+ generates SWIFT input data, but outputs from other models or measured data can also be used!

 \rightarrow Streamflow and nutrient loads

ECONOMIC VALUATION

Valuation functions for four categories (human uses most likely impacted by nutrient pollution):

- ➢ Housing markets
- ≻ Water-based recreation
- > Drinking water treatment
- Climate change

These functions provide estimates of the economic damages that arise from increases in pollution and conversely the benefits from pollution reductions.

 \rightarrow Estimated Damages (total and by industry)

TOTAL GROSS ESTIMATED DAMAGES

Spatial pattern reflects importance of population in determining total damages.

These maps can help identify the most cost-effective regions for conservation action.

DAMAGES FOR RECREATION

Marginal damages: additional damage caused by additional units of pollution

NEXT STEPS

≻ Calibrate SWIFT

- > Quantify the current damages from nutrient pollution
- Estimate the marginal damage from emitting an extra ton of phosphorus and an extra ton of nitrogen in each individual watershed
- Analyze distribution of damages/benefits a cross socioe conomic characteristics (e.g., income, race)
- Estimate the benefits of USDA conservation programs

NBS-SWAT+ Community: Integrating Science, Policy, and Practice in Ecohydrological Modelling

Mojtaba Shafiei, Csilla Farkas, Eva Skarbøvik, Nikolai Friberg, Moritz Shore, Dominika Krzeminska, Anne-Grete Buseth Blankenberg, Christoph Schürz, Lien De Trift Ann van Griensven and Katrin Bieger

The Department of Ecoscience at Aarhus University is looking for a **Postdoc for one year starting as soon as possible** The Postdoc will mostly focus on setting up a SWAT+ model for a small, intensely monitored watershed in Denmark and perform a detail analysis of all hydrological and nutrient transport processes. If interested, please send your CV to katrin.bieger@ecos.au.dk.

Thank you!

ka trin.b ie g e r@e c o s.a u.d k