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Outline

* A bit of personal history and background,
with a focus on what should be relevant for
further development of SWAT

* Qutcomes from recent exploration of MME
approaches to Soil Carbon

* Closing thoughts and recommendations




Personal History

* | began writing computer models in 1981, to
simulate performance of a controlled release
systemic deer repellent tablet in forest soils

* After a brief stint in Formulations at Shell, | joined
Monsanto in 1985, where | was promptly placed
on “special assignment” to understand EPA
modeling of pesticides in ground & surface water




CDE-k Model for Dispersion

Chent. Eng. Comm. 1988, Vol. 00, pp. 000-000
Reprints available directly from the publisher. MODELING ROOT ZONE DISPERSION

Photocopying permitied by license only.
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The same CDE-k model also fits
observed watershed-scale dispersion

Environ. Sci. Technol. 2004, 38, 2995—3003
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And the exact same CDE-k model fit

nation-scale COVID outbreak data!

* In the spring of 2020, |
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Nonlinear Dissipation Model

Reprinted from ENVIR NMENTAL SCIENCE & TECHNOLOGY, Vol. 24, 1990
Copyright © 1 990]1 the A 1 Society and d by of the ight owner.
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MME Soil C Workgroup

* In early 2023, CTIC & Field to Market co- J-;_-I'_'“’-"..-;.
launched a workgroup to explore the fea3|b|I|ty
of developing a multi-model ensemble (MME)
approach to solil carbon

« Such approaches have ample precedent in ¥
modeling COmpleX prOceSSGS (e_g_, C|imate, Image sources: NatlonaIHurrlcane Centerand CTIC
crop yields, weather, etc.) An MME has tighter

uncertainty intervals
than possible with

* As demonstrated by AgMIP and others In any single model

multiple peer-reviewed studies, the median of

an MME gives better predictions than any
single model (e.g., Riggers, et al., 2019) Soil Carbon

Image source: Gustafson (2023), AqClimate.Net.
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http://www.agmip.org/
http://www.ctic.org/soil-carbon
https://doi.org/10.1016/j.geoderma.2019.03.014
https://www.agclimate.net/2023/06/16/progress-in-applying-a-multi-model-ensemble-approach-to-soil-carbon/

Target Deliverables

* A peer-reviewed article in a first-tier journal
showing the benefits of the MME approach

* An API (free to anyone) that allows any interested
party to deploy the MME approach




Phase 1 Workgroup Activities

* Hybrid kickoff workshop (March, MSP)
* Poster presentation (April, EGU23)
* Panel presentation at Field to Market (June, St. Louis)

* Public comments on USDA MMRYV Strategy (August,
filed by CTIC)

* Field to Market Science Team presentations to Board
(October) and Metrics committee (December)

» Continued discussions with Bruno Basso, at AgMIP9
(June) and AGU23 (December)




Phase 1 Workgroup Findings

* Bruno Basso has made excellent progress on a viable
MME approach, which he plans to publish

* He has proposed a process for development of an AP
based on publicly-available models and free to use

* Important to ensure the APl is fully interoperable with
the FieldPrint platform and other relevant tools &
datasets (e.g., the National Calibration Dataset)

* There is a continued role for the MME-Soil-C workgroup
to ensure the API will meet user needs




Concerns with the Proposed API

* |s it reasonable to use uncalibrated models?

e Should individual models remain unidentified?

» Are these the right models? What about DNDC, other “real” biogeochemical models, and
additional modern approaches (e.g., models based on ML, etc.)?

« Should API development and implementation be left within a single academic institution
vs. a partnership involving a “real” software developer?

» Timelines have already been slipping and getting funding for AP| development will likely
bring further delay, all at a high environmental cost. Humanity generates 0.14 Gt CO.,e
each day. It takes ~400M acres of cover crops to capture that much C in one year. For
mitigation to be effective, it must be fast. Given all this urgency, is an API the next step?

* Related concern: The far bigger mitigation opportunity in croplands is N,O, not C. /s an API that
doesn’t handle N,O worth the effort?




Phase 1 Report Conclusions

« Despite some challenging feedback, there is support for Dr. Basso’s proposed
prototype MME-API to proceed at MSU

« Report encourages USDA/NRCS to fund this work, in parallel with his planned
publication (given the urgency)

« Workgroup to continue in some form to ensure user needs are being met (e.g., help
define MME-API specifications for input data requirements, for interoperability, etc.)

* |ssues to receive strong consideration as the
prototype is developed and certainly before it
becomes operational

* Involve a commercial software vendor outside of academia
 Include additional biogeochemical models
* Model calibration, anonymity, N,O

https://www.ctic.org/media/web/170654 1941
MME-Soil-C-Phase-1-Report-DRAFT.pdf



https://www.ctic.org/media/web/1706541941_MME-Soil-C-Phase-1-Report-DRAFT.pdf
https://www.ctic.org/media/web/1706541941_MME-Soil-C-Phase-1-Report-DRAFT.pdf

Thoughts & Recommendations

* Though not discussed here, there are HUGE differences in
the predictions of leading SOC/GHG models

* All forms of environmental modeling are likely to be
radically transformed by Al and MME-based approaches

* As the SWAT model is enhanced to address SOC/GHG
outcomes, an object-oriented modeling approach should be
taken that allows for the easy inclusion of an MME-based
API, once it has been made available




THANK YOU!

Dave Gustafson

+1-314-409-7123
gustafson@ctic.org
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Net zero occurs when human-caused global CO, emissions cross
this zero-line. Where an emissions pathway falls below this line,
more CO, is being removed from the atmosphere than is being added.

source: NCAS5: 5th US National Climate Assessment (2023).

.  Disconnect between NCAS5 and reported global GHG

- emissions (now 50 Gt CO,e per year or 0.14 Gt per day)

+ If effective mitigation ever begins, soil carbon will play a
helpful but relatively minor role; 400 M acres of cover crops
(at 0.33 t/ac) require one year to offset the 0.14 Gt per day

Our World
in Data

Annual greenhouse gas emissions by world region, 1850 to
2021

Greenhouse gas emissions include carbon dioxide, methane and nitrous oxide from all sources, including land-use change.

They are measured in tonnes of carbon dioxide-equivalents over a 100-year timescale.
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https://ourworldindata.org/co2-and-greenhouse-gas-emissions
https://globalchange.gov/our-work/fifth-national-climate-assessment
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Workgroup Guiding Principles

* |nitially co-led by Dave Gustafson (CTIC) & Paul Hishmeh (Field
to Market)

« MME to be based on models that are each “publicly available,
documented transparently, and based in peer-reviewed
iterature” (USDA Climate Smart PCSC lanquage)

* |[nvite all private- and public-sector modeling teams

* |P for the API to be governed by requirements of the funders

* APl itself should not be owned by a for-profit, commercial entity
* AP| will require no more data than running a single model



https://www.usda.gov/climate-solutions/climate-smart-commodities

MME Workgroup Focus

« As a new quantitative measure of Soil C for the Fieldprint® Platform

» To quantify Soil C changes in USDA Climate Smart Commodity projects

Applying the best available science to this topic will ultimately result in greater accuracy,
tighter confidence intervals, and higher payments for producers.

Both applications have a US-only focus — thus not initially intended for use in global
initiatives (e.qg., SBTi, GHG Protocol, carbon registries). However, the workgroup will include
sufficient global representation such that consistency and the possibility of future
applications of the approach in such domains are both maintained.

Although it is not a target of the workgroup at this time, the same modeling approach will
eventually be expanded to include methane and nitrous oxide.



https://fieldtomarket.org/our-programs/fieldprint-platform/
https://www.usda.gov/climate-solutions/climate-smart-commodities
https://sciencebasedtargets.org/net-zero
https://ghgprotocol.org/

Kickoff Meeting Outcomes

* Meeting was well-attended, including leading public- and
private-sector teams, e.g., Indigo, Regrow, Nori, and HabiTerre

* Workgroup deliverables were broadly endorsed as being
valuable and achievable

* Bruno Basso (wearing his MSU/AgMIP hat) reported that he
has a shareable tool which runs 7 leading soil carbon models

* Inputs currently required by the Fieldprint Platform should be
sufficient to use as input to the proposed API

* Open invitation for others to join the core team, which included
Dave, Paul, Jeff Lail (Syngenta), Ross Bricklemyer (Bayer) &
Ellen Herbert (Ducks Unlimited)




Questions Posed at Close-out

What changes in functionality are needed for the
API proposed by Michigan State U?

What changes in the proposed implementation
process are needed for the API?

Is there a conditional consensus to support
development of the API, as modified?




Stakeholder Feedback (Dec-2023)

« Concerns about the GHG Protocol, SBTi and related initiatives, if MME will
never be adoptable in those contexts, why bother?

* Is this indeed a Killer issue? We had previously said it shouldn’t stop us.

* Developing an APl is the “trivial” and “easy” part. Is it worth pursuing an MME
approach to improved MMRYV, when there are other more pressing issues?
Here were some of the issues listed:

« Test and improve individual models
« Engage companies to collate soil sampling data
» Leverage existing remote sensing data to fill data gaps

« Despite the above questions, there is support for developing a prototype of

the proposed API now, subject to concerns listed on next slide I


https://ghgprotocol.org/
https://sciencebasedtargets.org/net-zero

Abstract (1 of 2)

In early 2023, the Conservation Technology Information Center (CTIC), in partnership with
Field to Market, launched a new workgroup to begin exploring the feasibility of developing
and using an appropriate multi-model ensemble (MME) approach to modeling soil carbon
in agricultural systems. The workgroup has included the research community, participants
in the emerging agricultural carbon marketplace, policy-makers, foundations, and other
relevant stakeholders — all led by a small core team who began meeting on a biweekly
basis in February 2023. We believe that applying the best available science to this topic
will ultimately result in greater accuracy, tighter confidence intervals, and higher payments
for producers. Although it has not been the initial target of our workgroup, the same
modeling approach should eventually be expanded to include methane and nitrous oxide.
The MME approach is initially intended for two specific purposes: (1) as a future
quantitative measure of soil carbon for the Fieldprint Platform; and (2) to be available as
an alternative method for quantifying soil carbon changes in USDA Climate-Smart
Commodity projects.




Abstract (2 of 2)

The workgroup presented its Phase 1 findings in a report published in February 2024.
Despite some of the challenging feedback received from certain workgroup members,
there was consensus support for the development of a prototype MME-API at Michigan
State University, as proposed by Dr. Bruno Basso. The workgroup made specific
suggestions for Phase 2 of the effort around model calibration, model anonymity, model
calibration, and on which models to include — including SWAT+. The Phase 2 work is
currently on-hold, pending the outcome of current efforts to secure the funding needed to
support development work. However, whether in Dr. Basso’s lab or elsewhere, it seems
inevitable that the demonstrated technical advantages of an MME approach will
eventually result in the availability of the tools needed to implement them. Accordingly, as
the SWAT+ team continues to pursue the addition of robust soil carbon and GHG
emission capabilities, it would seem wise to design its code in a way that it will be able to
fully embrace such approaches once they become available.



https://www.ctic.org/media/web/1708125358_MME-Soil-C-Phase-1-Report-Final.pdf
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