International SWAT

Conference & Workshops

June 2025

Jeju, South Korea

Spatial Optimization of Ponds for Diffuse Pollution Mitigation in Paddy Field Watersheds: An Integrated SWAT-NSGA-II Decision Support Framework

Beijing Normal University

Beijing normal university,

Supervisor: Wei Ouyang, wei@ bnu.edu.cn

Presenter: Xianyu Huang,

202321180011@mail.bnu.edu.cn

Introduction

 The refined management of diffuse pollution in small watersheds

Ponds control runoff and nutrient loss Paddy field scale Field-Ditch-Pond system scale

Liu L, Ouyang W. Process Safety and Environmental Protection, 2025.

Small water bodies: Ditch and Pond
Image: Constrained intervention of the second interventio

Research limitations:

- Fragmented distribution of ponds
- Decentralized management of ponds
- Consumption of manpower and material resources

Framework

Watershed scale

Spatial Optimization of Ponds for Diffuse Pollution Mitigation

TN: -24.15%

TP: -29.59%

Pond area/ha

Spatial Optimization of Ponds for Diffuse Pollution Mitigation in Paddy Field Watersheds: An Integrated SWAT-NSGA-II Decision Support Framework

Methodology

An Integrated SWAT-NSGA-II Decision Support Framework

Study area

- The Juzhang River watershed is in the middle reaches of the Yangtze River (7441 km²), located in the sub-tropical monsoon climate zone.
- There are crisscrossing natural channels and ponds.

The retention effect of the Paddy-Ditch-Pond system on nitrogen and phosphorus loss

nitrogen and phosphorus loss.

TP: 69.67% and 61.12%.

The rice growth period is critical for controlling nitrogen and phosphorus loss

7

Nitrogen and phosphorus loss shows strong spatial agglomeration characteristics.

- High-intensity loss area: two rivers'
 Confluence and dense Paddy field.
- Overlap: High water-yielding area and Nutrient loss area, Upstream areas with larger slopes and Sediment loss area.

Precipitation and land use types are the main driving factors

The interpretation degrees of RICE, PRECIP, and WYLD for nitrogen and phosphorus load output are 41.9%, 20.1%, and 11.7% respectively.

Pond area is positively correlated with N and P removal rates

Higher removal rates demand more ponds per sub-watershed

- Optimal spatial distributions of different pond area can achieve
 8.4%-36.9% TN and 11.12%-45.7% TP removal.
- The DSS optimal configuration delivers 24.15% TN and 29.59%
 TP removal efficiencies.
- Higher removal rates demand more ponds per sub-watershed.

Pond removal efficiency decreases with rainfall

Discussion

Field-scale removal efficiency exceed watershed-scale performance.

- The paddy ditch pond system exhibits a notable lagging effect and retention capacity for nitrogen and phosphorus in paddy fields.
- The critical period of diffuse pollution and loss is concentrated, and the spatial heterogeneity is significant.

Under the SWAT-NSGA-II Decision Support Framework, TN and TP can be reduced by 24.15% and 29.59%, respectively. **International SWAT**

Conference & Workshops

June 2025 Jeju, South Korea

Thank you!

Beijing Normal University

Beijing normal university,

Supervisor: Wei Ouyang, wei@ bnu.edu.cn

Presenter: Xianyu Huang,

202321180011@mail.bnu.edu.cn