

Modelling climate resilience measures with SWAT+

Impacts of land use adaptations on water retention

11 July 2024

Sven Grantz, Paul Wagner, Jens Kiesel & Nicola Fohrer

Bundesministerium für Bildung und Forschung

GEFÖRDERT VON

Department of Hydrology and Water Resources Management

Need for increased water retention

Endangered water supply

Low water level at Hullern reservoir, 2019 (Gelsenwasser)

Reduced agricultural yields

Dried maize (Bernd Brueggemann / Fotolia) Dins

Degradation of ecosystem services

Dried up river Rotbach in Dinslaken, 2022 (EGLV/Fritsche)

Can landuse adaptions change water retention?

Department of Hydrology and Water Resources Management – Grantz et al. 07/2024

Upper Catchment of the Lippe River

Representation of agricultural areas

Representation of agricultural management practices

- <u>Land management parameters</u> based on literature (KTBL, 2009) and expert interviews with the regional Chamber of Agriculture (2024)
- For <u>sorghum</u> (*Sorghum bicolor LM*), management information is based on field experiments (Bavarian LfL, 2024)
- Spatial distribution of <u>tile drainage</u> based on potentially drained areas assessed by Tetzlaff (2021)

Agricultural landscape in the Lippe catchment, 2024

Field trials with sorghum millet cultivation, 2024

Representation of forested areas

General forest types (CORINE 2018) → Dominant tree species

Blickensdörfer et al., 2024

SWAT+ model's standard parameters

→ Adapted tree parameters Müller, 2022

Representation of residential and commercial areas

Average imperviousness in the Upper Lippe catchment				
Residential – Medium Density	Commercial			
	(Industry, Commerce, Transport)			
46 %	58 %			

Model performance in the investigation period

Analysis of runoff components on the catchment scale

Department of Hydrology and Water Resources Management – Grantz et al. 07/2024

Modelling of an alternative landuse scenario

	Adaption of crops Adaption of forest composition		Adaptation of residential and commercial areas	
	Corn to Grain sorghum	Coniferous to Deciduous Forest	Reduction of Imperviousness	
Area	Silage Corn: 212 km ² Corn: 124 km ²	Spruce: 125 km ² Pine: 49 km ²	Residential: 143 km ² Commercial: 38 km ²	
Share of the catchment	17 %	9 %	9 %	
Measure	Replacement of corn (Zea mais L.) with sorghum (Sorghum bicolor) in crop rotations	Change dominant tree species from coniferous to deciduous depending on site properties	greening roofs and rainwater cisterns with infiltration options	
SWAT + (v 60.5.4) implementation	landuse.lum, management.sch, plant.ini	landuse.lum, plant.ini	adjust FRAC_DC_IMP in urban.urb	

Department of Hydrology and Water Resources Management – Grantz et al. 0//2024

Modelled water balance results for crop adaptation

Department of Hydrology and Water Resources Management – Grantz et al. 07/2024

Modelled water balance components for forest composition adaptation

Department of Hydrology and Water Resources Management – Grantz et al. 07/2024

Modelled water balance results for adaptation in settlements and commercial areas

Impacts of alternative landuse on the water balance

Adaption of Crops Adaption of Forest Composition Reduced Imperviousness

References

Bayrische LfL (Hg.) (o.D.): Versuchsergebnisse Körnerhirse (Sorghum bicolor). https://www.lfl.bayern.de/ipz/mais/295682/index.php, Abruf: 15/03/2024

Bieger, K. et al. (2017): Introduction to SWAT+, a Completely Restructured Version of the Soil and Water Assessment Tool. JAWRA Journal of the American Water Resources Association, vol. 53, no. 1, 2017, pp. 115–30. doi:10.1111/1752-1688.12482.

Blickensdörfer, L. et al. (2024): National Tree Species Mapping Using Sentinel-1/2 Time Series and German National Forest Inventory Data. Remote Sensing of Environment, vol. 304, 2024, p. 114069. doi:10.1016/j.rse.2024.114069.

Chamber of Agriculture, North Rhine Westphalia (2024): Interviews conducted by Kiel University.

European Environment Agency (2020): Imperviousness Density 2018 (Raster 10 M and 100 M), Europe, 3-Yearly.

Garcia, Florine, et al. "Which Objective Function to Calibrate Rainfall–runoff Models for Low-Flow Index Simulations?" Hydrological Sciences Journal, vol. 62, no. 7, 2017, pp. 1149–66. doi:10.1080/02626667.2017.1308511.

Gupta, Hoshin V., et al. "Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling." Journal of Hydrology, vol. 377, 1-2, 2009, pp. 80–91. doi:10.1016/j.jhydrol.2009.08.003.

KTBL (2009): Faustzahlen für die Landwirtschaft. 14. Auflage. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V..

McKay, M. D. "Sensitivity and Uncertainty Analysis Using a Statistical Sample of Input Values." Sensitivity and Uncertainty Analysis Using a Statistical Sample of Input Values: Uncertainty Analysis, edited by Y. Ronen, CRC Press, Boca Raton, Florida, 1988, pp. 145–86.

McKay, M. D., et al. "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code." Technometrics, vol. 42, no. 1, 2000, pp. 55–61.

Moriasi, D. N., et al. "Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations." Transactions of the ASABE, vol. 50, no. 3, 2007, pp. 885–900. doi:10.13031/2013.23153.

Nash, J. E., and J. V. Sutcliffe. "River Flow Forecasting Through Conceptual Models Part I — A Discussion of Principles." Journal of Hydrology, vol. 10, no. 3, 1970, pp. 282–90. doi:10.1016/0022-1694(70)90255-6. Müller, E. V. (2022): Analysis of Forest-Specific Ecosystem Services with Regard to Water Balance Components: Runoff and Groundwater Recharge in the Forest.

Pfannerstill, M., Guse, B., & Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458.

Yilmaz, Koray K., et al. "A Process-based Diagnostic Approach to Model Evaluation: Application to the NWS Distributed Hydrologic Model." Water Resources Research, vol. 44, no. 9, 2008, doi:10.1029/2007WR006716.

Backup Slides

Change in discharge (2011 – 2020)

SWAT+ model calibration and validation

- Gauge: Kesseler 3
- Latin Hypercube Sampling (McKay et al., 2000; McKay, 1988) of 19,200 parameter sets
- Objective function: lowest RSR in the low-flow segment of the flow duration curve (0.7–1.0 flow exceedance probabilities)
- Behavioral runs with thresholds of $-5 \le PBIAS \le 5$ and KGE ≥ 0.5

Further research

• Parameterization of management measures

- Modelling of rule-based implementation scenarios based on feasibility analyses
- Modelling and evaluation of the combined measures in regionalized climate scenarios RCP 2.6 and RCP 8.5 (German Weather Service Core Ensembles v2018)

Thank you for your attention! sgrantz@hydrology.uni-kiel.de

Conclusions: Changes of the runoff components from landuse-based climate resilience measures

Adaption of Crops Adaption of Forest Composition Reduced Imperviousness

SWAT+ model calibration and validation

- Latin Hypercube Sampling (McKay et al., 2000; McKay, 1988) of 19,200 parameter sets
- Objective function: best performance low-flow segment of the flow duration curve (0.7–1.0 flow exceedance probabilities)

	Calibration	Validation
Years	2007, 2018, 2004,	2002, 2016, 2001
	2013, 2005, 2014,	2020, 2017, 2011
	2010, 2003, 2019,	2009, 2008, 2006
	2015	2012
Precipication (average)	814.6076	827.4398
Precipication (standard deviation)	153.4750148	140.5080816
Kling-Gupta Efficiency (KGE, Kling et al. 2009)	0.81	0.81
Nash-Sutcliffe Efficiency (NSE, Nash et al. 1970)	0.72	0.72
Percent Bias (PBIAS, , Moriasi et al. 2007)	-0.6	5.9
Root Square Error (RSR, Moriasi et al. 2007) low flows (Yilmaz et al. (2008)	0.07	0.32
Kling-Gupta Efficiency low flows (KGElf, Garcia et al. 2017)	0.88	0.85

Parameter	Description	Change	Min	Max	Final value/adjustment
SURLAG	Surface runoff lag coefficient	absval	0.05	0.2	0.11416
CN2	Condition II curve number	abschg	-30	0	-16.02966
CN3_SWF	Soil water factor for curve number condition III	absval	0	1	0.74405
ESCO	Soil evaporation compensation coefficient	absval	0	1	0.27152
EPCO	Plant water uptake compensation coefficient	absval	0	1	0.73084
AWC	Available water capacity of the soil layer (mm H2O/mm soil)	pctchg	-50	50	38.22824
К	Saturated hydraulic conductivity of soil layer (mm H ₂ O/hr)	pctchg	-50	50	30.67697
LATQ_CO	Lateral flow coefficient	absval	0	1	0.88037
LAT_LEN	Average slope length for lateral subsurface flow	pctchg	-40	40	-35.47720
TILE_DTIME	Time to drain soil to field capacity (hrs)	absval	48	72	70.63843
TILE_DRAIN	Maximum drainage capacity per day (mm)	absval	10	51	50.08286
PERCO	Percolation coefficient	absval	0	1	0.92981
ALPHA	Baseflow recession constant	absval	0.001	0.2	0.00425
SP_YLD	Aquifer specific yield (m ³ H ₂ O/m ³)	absval	0.05	0.2	0.05172

