INTEGRATED SWAT+ SOFT-CALIBRATION PROCEDURE FOR WATER BALANCE AND CROP YIELDS

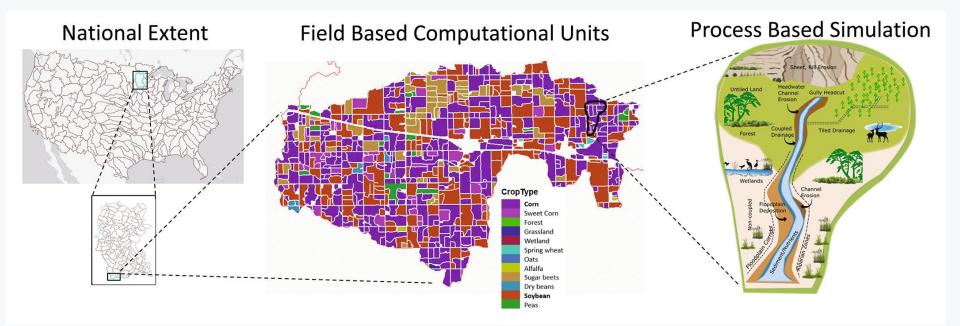
<u>Natalja Čerkasova</u>, Jeffrey Arnold, Michael White, Sagarika Rath, Celray James Chawanda, Joon-Hee Lee

> 2023-06-28 International SWAT Conference, Aarhus, Denmark

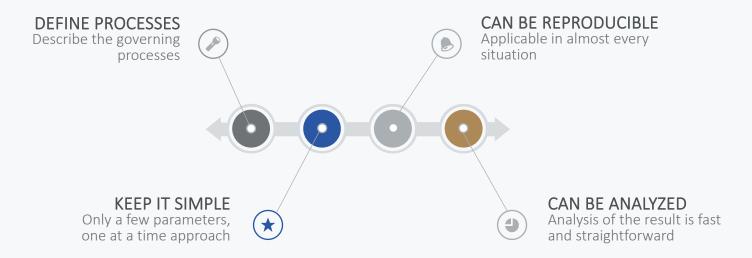
BACKGROUND

ΓΕΧΑS Α&Μ

RESEARCH



National Agroecosystems Model



DEVELOPMENT OF A FIELD SCALE SWAT+ MODELING FRAMEWORK FOR THE CONTIGUOUS U.S.

HOW TO CALIBRATE SUCH FRAMEWORKS?

Soft-calibration

WHAT IS SOFT CALIBRATION IN SWAT+?

GROUND RULES

An algorithm that is hard-coded into SWAT+. Can be activated via input files.

Can be useful if the model is verified: all processes are working as they should be; all plants are growing as they should be; all stresses are accounted for.

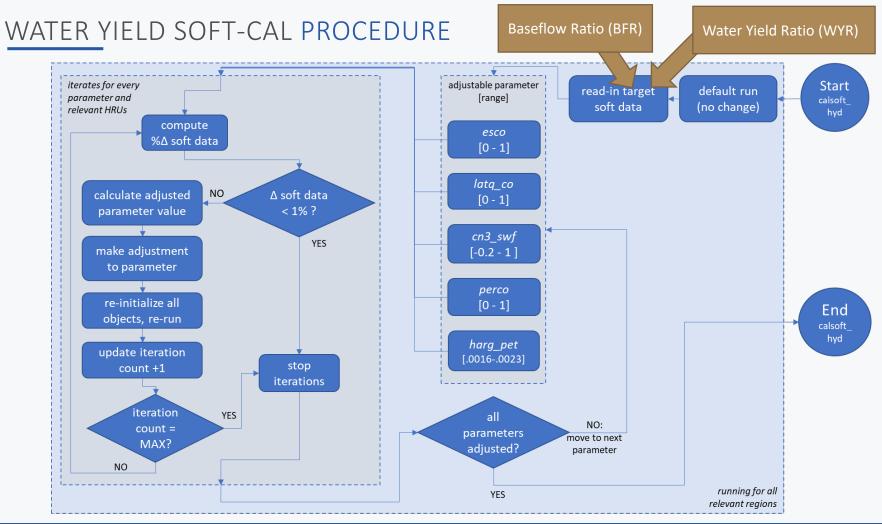
Works on processes.

Uses soft data as inputs:

CURRENTLY AVAILABLE SOFT-CAL OPTIONS IN SWAT+

More are in future development

```
WATER BALANCE SOFT-CAL (WB)
    Inputs are:
                                                      Water Yield Ratio (WYR) =
    total water yield (surface + lateral + tile +
                                                       perc) / precipitation
    Baseflow Ratio (BFR) =
                                                           •
    total baseflow (lateral + tile + perc) / total
    water yield
                                                           The processes which are calibrated:
•
    surface runoff, lateral flow, percolation, ET.
```


CROP YIELD SOFT-CAL (YLD)

Inputs are:

Average annual yield for each crop (t/ha)

- The processes which are calibrated:
 - aeration stress (no tile)
 - LAI development,
 - reduction of harvest due to unfavorable conditions,
 - plant water uptake.

8 🚫

WATER BALANCE ADJUSTMENT

Computation steps

ONE VARIABLE AT A TIME:

1) esco

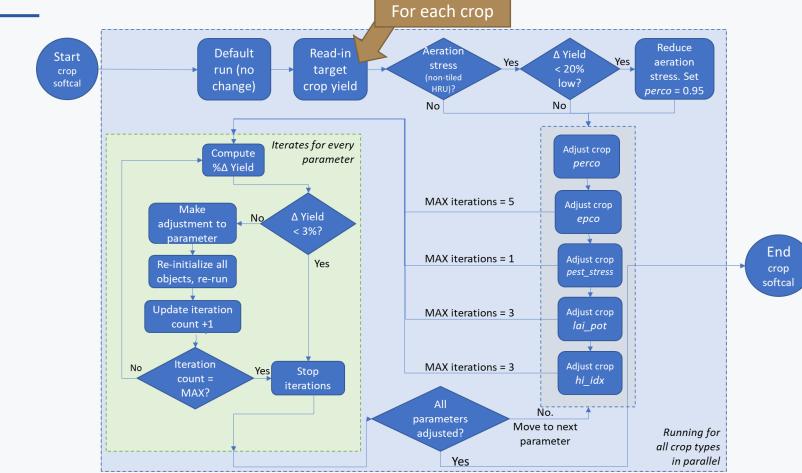
- 2) petco
- 3) cn3_swf
- 4) latq_co

5) perco

6) cn3_swf

... calibrated again to ensure surface runoff is accurate

Initial change in each variable is a function of the difference (mm) in the soft ratio multiplied by precipitation minus the modeled process output.


Variable	Initial change (guess)
esco	(ET _{soft} – ET _{sim}) / 500.
petco	$(ET_{soft} - ET_{sim}) / ET_{soft}$
cn3_swf	- (SURQ _{soft} – SURQ _{sim}) / 100.
latq_co	$(LATQ_{soft} - LATQ_{sim}) / 400.$
perco	(PERC _{soft} – PERC _{sim}) / 1000.

EXAMPLE:

- The user input 0.2 surface runoff ratio;
- Simulated precipitation = 800 mm;
- Surface runoff =120 mm.
- Initial difference = 0.2*800 120 = 40 mm. [(SURQ_{soft} SURQ_{sim})]

... the next value of cn3_swf used in the calibration would be set to (cn3_swf - 0.4) [- (SURQ_{soft} – SURQ_{sim}) / 100]

CROP YIELD SOFT-CAL PROCEDURE

CROP YIELD ADJUSTMENT

Computation steps

ONE VARIABLE AT A TIME:

1) perco* \rightarrow if needed

2) epco

3) pest_stress

4) lai_pot

5) hi_pot

The initial change applied to each parameter is a function of the percent difference between the simulated and observed yields.

Variable	Initial change	Number of linear interpolations
ерсо	if (diff _{pct} >= 10%) chg_init = -0.01 * diff _{pct} + 0.06 if (diff _{pct} < 10%) chg_init = 1.0	4
pest_stress	diff _{pct}	0
lai_pot	0.5 * diff _{pct}	2
hi_pot	0.005 * diff _{pct}	2

After the initial change, the algorithm uses linear interpolation in subsequent iterations

CALIBRATION SEQUENCE

Which one to do first?

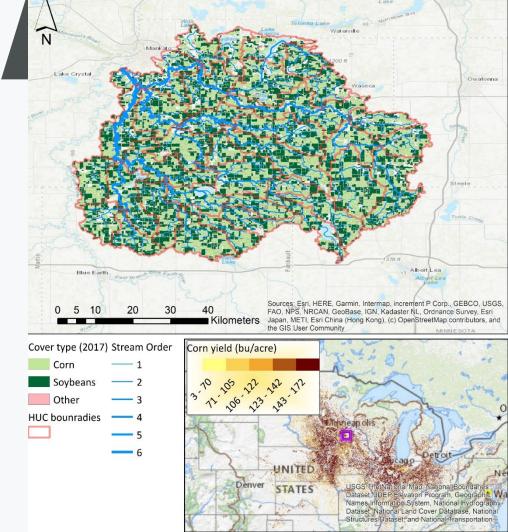
We suggest

- 1 Water Balance
- 2 Crop Yield

One will need:

- water_balance.sft
- wb_parms.sft
- codes.sft
- plant_parms.sft
- plant_gro.sft

?

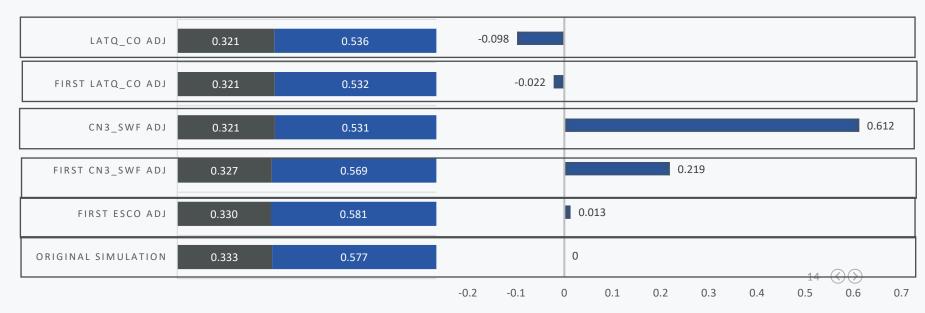


EXAMPLE WATERSHED

Le Sueur watershed

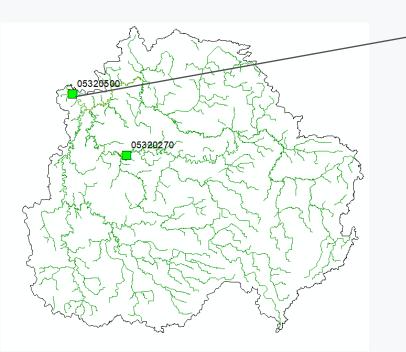
- > Major watershed of the Minnesota River Basin.
- ➢ 2850 km²
- Average annual mean flow ~ 21 m³/s
- ➢ 87% Agriculture → Corn-Soybean rotation
- Soils are poorly drained most agriculture (~92%) is tile-drained.

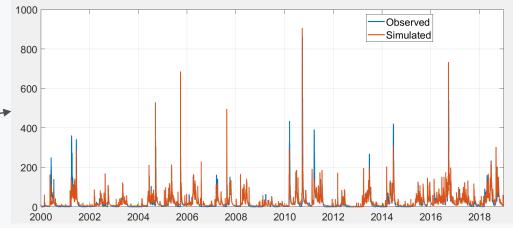
	Water Yield Ratio (WYR)	Baseflow Ratio (BFR)
Target	0.329	0.557



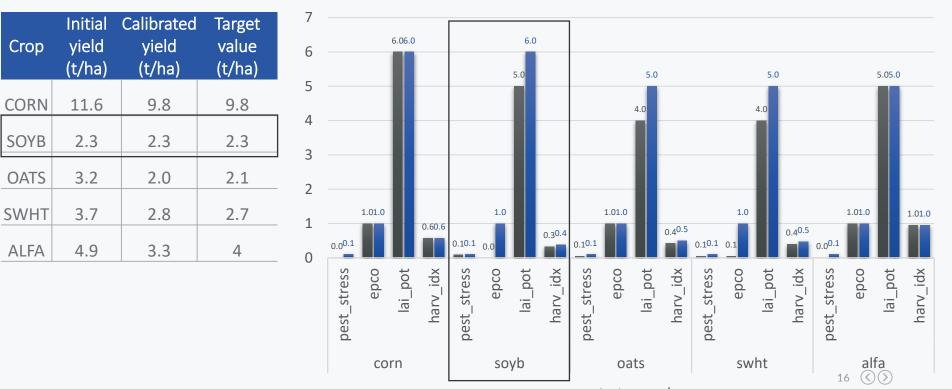
SOFT-CAL PARAMETER ADJUSTMENTS Steps

SOFT-CAL ITERATIONS


ADJUSTMENT


WYR BFR

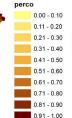
WHAT ABOUT HARD-CAL?


Improved stremflow

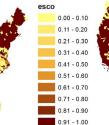
➢ Daily NSE for flow > 0.5

EXAMPLE CROP YIELD CALIBRATION

■ start ■ end

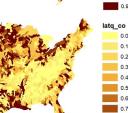

Assigned values

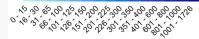
Initial values


0.81 - 0.90 0.91 - 1.00 0.00 - 0.10 0.11 - 0.20 0.21 - 0.30 0.31 - 0.40 0.41 - 0.50 0.51 - 0.60 0.61 - 0.70 0.71 - 0.80 0.81 - 0.90

0.91 - 1.00

cn3_swf -0.20 - -0.10 -0.09 - 0.00 0.01 - 0.10 0.11 - 0.20 0.21 - 0.30 0.31 - 0.40 0.41 - 0.50 0.51 - 0.60 0.61 - 0.70 0.71 - 0.80

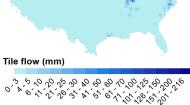




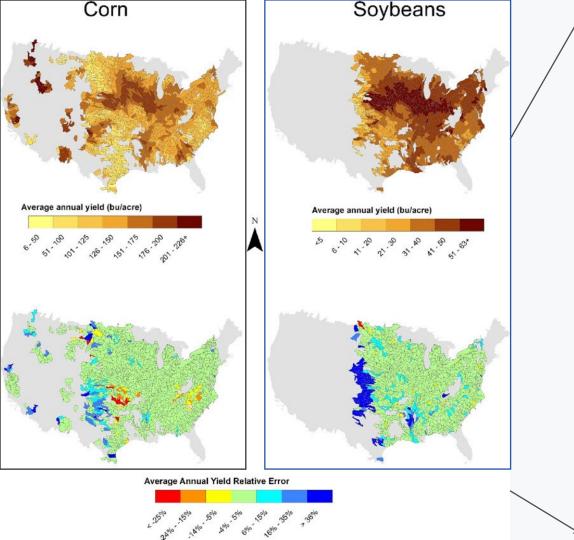
Irrigation (mm)

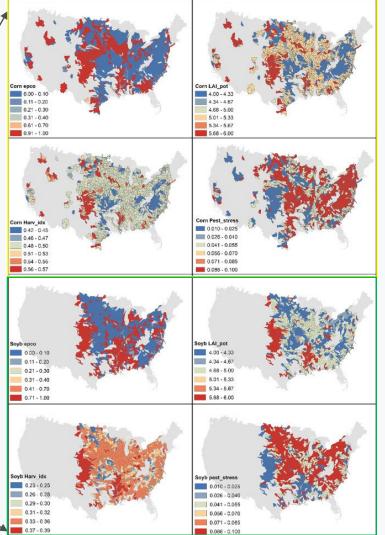
Percolation (mm)

Lateral flow (mm)



Tile flow (mm)


RUNNING SOFT-CAL AT LARGE SCALE


Average annual values

National Agroecosystems Model

Agricultural Systems 210 (2023) 103695

PUBLISHED RESULTS

Full text available at

https://doi.org/10.1016/j.agsy.2023. 103695

Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development

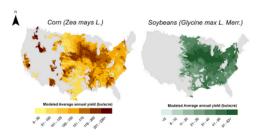
Natalja Čerkasova ^{a, f, *}, Michael White ^b, Jeffrey Arnold ^b, Katrin Bieger ^c, Peter Allen ^d, Jungang Gao ^a, Marilyn Gambone ^b, Manyowa Meki ^a, James Kiniry ^b, Philip W. Gassman ^e

^a Texas A&M AgriLife Research, Blackland Research and Extension Center, 720 E. Blackland Road, Temple, TX 76502, United States

^b USDA-ARS Grassland Soil and Water Research Laboratory, 808 E. Blackland Road, Temple, TX 76502, United States

^c Aarhus University, Department of Ecoscience, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark

^d Baylor University, Department of Geosciences, Baylor Sciences Building D409, 101 Bagby Ave., Waco, TX 76706, United States


^e Center for Agricultural and Rural Development, Iowa State University, 578 Heady Hall, Ames, IA 50011, United States

^f Klaipeda University Marine Research Institute, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania

HIGHLIGHTS

GRAPHICAL ABSTRACT

- SWAT+: a high-resolution nationalscale model for crop growth and yield estimation
- National scale model with over 2.5 M individual corn and soybeans fields simulated.
- Crop yield calibration procedure incorporated into the new SWAT+ model.

TO SUM-UP


Soft-cal

THANK YOU!

IN-BUILD Does not require additional software

FAST Runs in just a handful simulations

MINIMAL INPUT Only several sof-cal values required as input

REPEATABLE Can be reproducible with ease

natalja.cerkasova@brc.tamus.edu

20 🚫