

An efficient approach for simulating the effect of small agricultural reservoirs on water management with SWAT+

Lorenzo Villani^{1,2}, Giulio Castelli^{1,3,4}, Eleonora Forzini¹, Ismail Bouizrou¹, Gabriele Bertoli⁵, Marco Lompi⁵, Alessandro Giuliano⁵, Tommaso Pacetti⁵, Enrica Caporali⁵, Elena Bresci¹

- ¹ Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
- ² Department of Water and Climate (HYDR), Vrije Universiteit Brussels, Belgium
- ³ UNESCO Chair in Hydropolitics, University of Geneva, Switzerland
- ⁴ Environmental Governance and Territorial Development Hub (GEDT), University of Geneva, Switzerland
- ⁵ Department of Civil and Environmental Engineering (DICEA), University of Florence, Italy

This project is part of the PRIMA programme supported by the European Union. Grant Agreement Number No. [Italy: 391 del 20/10/2022, Egypt: 45878, Tunisia: 0005874-004-18-2022-3, Greece: ITP21-0474657, Spain: PCI2022-132929]

SWAT conference, Strasbourg, 10-12 July 2024

Outline

- 1. The research context: the AG-WaMED project
- 2. Representing small agricultural reservoirs (SmARs) in SWAT+
- 3. Calibration and validation strategy: the simplified and complex models
- 4. Participatory modelling, next activities and conclusions

The AG-WaMED project

- Full name: Advancing non-conventional water (NCW) management for innovative climate-resilient water governance in the Mediterranean Area
- Objective: providing innovative, evidence-based participatory management solutions to water scarcity governance that can be scaled at the Mediterranean level, mainly by <u>including NCW</u> (wastewater, runoff water harvesting, desalination) in water governance policies.
- > **Duration**: September 2022 August 2025
- Funding: PRIMA Foundation Consortium Section 2
- > Number of partners: 8
- > Countries involved: 7
- Living Labs (LL): 4 in 5 countries

This project is part of the PRIMA programme supported by the European Union. Grant Agreement Number No. [Italy: 391 del 20/10/2022, Egypt: 45878, Tunisia: 0005874-004-18-2022-3, Greece: ГГР21-0474657, Spain: PCI2022-132929]

AG-WaMED methodology

2 out of 4 workshops were carried out so far

Val d'Orcia Living lab, Tuscany (Italy)

Size: 748 km² Precipitation: 715 mm Main activities: agriculture and tourism Main crops: vineyards, olive, cereals

First workshop

Project presentation and establishment of the Living Lab

Analysis of the situation related to (non)conventional water:

- Typically rainfed crops now require supplemental irrigation, and Small Agricultural Reservoirs (SmARs) can play a crucial role
- Economic and regulation problems hinder the restoration of existing SmARs and realization of new ones
- Sedimentation problems are a major issue, and agricultural practices can contribute to limit erosion
- Community irrigation development is challenging but could be very useful

Small agricultural reservoirs (SmARs)

Number of SmARs	1097	
Average surface	1432 m ² = 0.14 ha	
Biggest SmAR	45429 m ² = 4.54 ha	
% of SmAR with area < 500 m^2	58%	
Number of SmARs with area > 1 ha	29	
Total SmARs surface	161 ha	
Total SmARs volume (estimated)	6.7 millions m ³	

SWAT+ modelling in AG-WaMED

Final objective:

- To provide information and input data for the other analyses and the integrated watershed management plan, mainly focusing on:
 - SmARs impact on water balance
 - Large planned dam impact on water balance
 - Erosion and good practices

What is done:

- Simplified SmARs representation
- SWAT+ cal/val

Problems in representing SmARs

Problems:

- > in SWAT+ we can represent only in-stream reservoirs
- Difficult representation of reservoir management (irrigation and releases), also due to lack of data

Outputs and analysis only valid at the catchment scale

Impact of SmARs on flow

Sedimentation

Approaches to represent SmARs

- by creating a grid model, considering a cell as a reservoir if the latter covers >50% of the cell area
- 2. by **including SmARs when creating HRUs**, so that SWAT+ considers a floodplain as a SmAR
- 3. by adding them in the watershed delineation step **using the SmARs shapefile**
- 4. by **considering them as "playa lakes",** hence not connected to the channel network but just as a different land use

5. by **manually adding each SmAR** individually

Not feasible

Not representative

Placing SmARs on the channel network

Only 177 SmARs out of 1097 are on the channel network.

Should we move some SmARs on the channel network?

<u>Yes</u>,

- If movable on a channel (not on streams)
- If the reservoir has a reasonable upstream area
- > If it is clear to which channel they can be moved on
- If the distance between the reservoir and the channel is up to 150 m for reservoirs with area >400 m²
- If the distance between the reservoir and the channel is up to 80 m for reservoirs with area <400 m²

SmARs: Example 1

3 SmARs - included

SmARs: example 2

4 SmARs – included and merged

SWAT+ reservoirs

- SWAT+ channel
- Burnt-in streams
- SWAT+ Subbasins

Google Satellite

SmARs: example 3

1 SmAR – not on the channel network but **included** since we assumed that it is filled by the channel

- SWAT+ reservoirs
- Reservoirs
- SWAT+ stream
- SWAT+ channel
- Burnt-in streams
- SWAT+ Subbasins

Google Satellite

SmARs: example 4

2 SmARs – **excluded** since they are filled by the Orcia river (stream network)

SWAT+ reservoirs

- SWAT+ channel
- Burnt-in streams
- SWAT+ Subbasins

Google Satellite

SmARs: Example 5

1 SmAR – **excluded** because too far from channel network

- SWAT+ reservoirs
- Reservoirs
- SWAT+ stream
 - SWAT+ channel
 - Burnt-in streams
- SWAT+ Subbasins
- Google Satellite

Representing SmARs

With this procedure, we **included**:

358 / 1097 SmARs (32.6%)

127 / 161 ha of SmARs surface (80%)

5.3 / 6.7 million m³ of SmARs volume

Calibration and validation strategy

To include the maximum number of SmARs as possible, we created as many channels as possible using a **small threshold** (5 ha).

Very complex model that required **long simulation time**

Simplified version of the model to perform calibration and validation

 Model
 HRUs
 Channels
 Reservoirs

 Complex
 112401
 1111
 329

 Simplified
 3773
 220
 0

Transfer of the calibrated parameters to the complex model

Calibration and validation characteristics

Variables:

- 1. Monthly streamflow with rating curve modelled with HEC-RAS
- 2. Monthly actual evapotranspiration (ET) at basin scale from MODIS

Statistics and performance criteria:

NSE, Pbias, RSR, R²; Moriasi et al. 2007, 2015

Software:

SWAT+ Toolbox

Periods:

Warm up 1 year, calibration 2011-2016, validation 2017-2020

Results: Calibration and validation of the simplified version

- > Sensitive parameters for ET and flow were similar.
- > Focus on flow since ET was always simulated satisfactorily, regardless of the changes.
- > Final adjustment required due to a problem in the SWAT+ Toolbox.

Parameter	Type of change	Min/max	Automatic changes	Final changes
cn2	Percent	+/- 20%	-10.22%	-20.00%
bd	Percent	+/- 20%	15.14%	15.14%
esco	Replace	0 - 1	0.068	0.118
ерсо	Replace	0 — 1	0.133	0.133
revap_co	Replace	0.02 - 0.2	0.123	0.123

Results: basin monthly actual evapotranspiration

Variable	Monthly ET		Monthly ET	
Model	Simplified model	Complex model	Simplified model	Complex model
Calibration, 2011-2016		Validation, 2017-2020		
NSE	0.84 ¹		0.74 ²	
PBIAS	6.9% ¹		1.4% ¹	
R ²	0.86 ¹		0.75 ²	
RSR	0.40 ¹		0.51 ²	

Results: basin monthly actual evapotranspiration

Variable	Monthly ET		Monthly ET	
Model	Simplified model	Complex model	Simplified model	Complex model
	Calibration,	Validation, 2017-2020		
NSE	0.84 ¹	0.85 ¹	0.74 ²	0.72 ²
PBIAS	6.9% ¹	1.9% ¹	1.4% ¹	- 5.4% ¹
R ²	0.86 ¹	0.86 ¹	0.75 ²	0.75 ²
RSR	0.40 ¹	0.39 ¹	0.51 ²	0.53 ²

Results: monthly streamflow

Variable	Monthly streamflow		Monthly streamflow	
Model	Simplified model	Complex model	Simplified model	Complex model
Calibration, 2011-2016			Validation, 2017-2020	
NSE	0.78 ¹		0.82 ¹	
PBIAS	11.7% ²	-	-27.3% ⁴	
R ²	0.85 ¹		0.88 ¹	
RSR	0.47 ¹		0.44 ¹	
1 .				

Results: monthly streamflow

Variable	Monthly streamflow		Monthly streamflow		
Model	Simplified model	Complex model	Simplified model	Complex model	
Calibration, 2011-2016			Validation, 2017-2020		
NSE	0.78 ¹	0.78 ¹	0.82 ¹	0.90 ¹	
PBIAS	11.7% ²	- 0.9% ¹	-27.3% ⁴	-20.2% ³	
R ²	0.85 ¹	0.83 ²	0.88 ¹	0.91 ¹	
RSR	0.47 ¹	0.47 ¹	0.44 ¹	0.33 ¹	

Second workshop

The **SWAT+ model results** were presented.

Stakeholders **confirmed the validity** of the approach used to represent SmARs, given the lack of data.

They also committed to provide further information.

Next steps

- Simulate effect of SmARs on Orcia streamflow and sedimentation dynamics.
- Improve the model based on stakeholders' feedback.
- 2 additional rounds of revisions through in-presence workshops.
- Preparation of an integrated watershed management plan.

Suggestions? Comments? Collaborations?

Please send me any **references** related to these issues

lorenzo.villani@unifi.it

Thank you for your attention!

Contacts

lorenzo.villani@unifi.it

Project website: https://agwamed.eu/

Facebook: AG-WaMED

Youtube: @AG-WaMED-by9bu

X: https://twitter.com/AgWamed

This project is part of the PRIMA programme supported by the European Union. Grant Agreement Number No. [Italy: 391 del 20/10/2022, Egypt: 45878, Tunisia: 0005874-004-18-2022-3, Greece: ΓΓΡ21-0474657, Spain: PCI2022-132929]

Partners

