### Understanding Catchment Hydrological Processes Under Non-Stationary Conditions

Wiyanda Naufal Aflah Rutger Willem Vervoort

School of Life and Environmental Sciences, The University of Sydney

SWAT International Conference, Jeju-South Korea, June 2025

ONE

BASIN

RC

THE UNIVERSITY OF

# Introduction





- Processes that dynamically interact over time
- **Support** ecosystem services, agricultural needs, and water supply
- Catchment systems are under pressures (Kimbi et al., 2024)
- Climate change and human intervention could alter catchment behaviour (IPCC, 2019; Bronstert et al., 2002)
- Non-stationary conditions continue to reshape catchment processes

# Challenge of Non-Stationarity





- Non-stationarity indicates **process changes** driven by significant shift in rainfall-runoff relationship (e.g., post Millenium drought) (Saft et al., 2015)
- Hydrological models tend to **underperform** under varying climate conditions, especially in dry condition (Vaze et al., 2010; Coron et al., 2012; Fowler et al., 2016)
- Various methods proposed, but **not fully resolve** the issue:
  - Machine learning  $\rightarrow$  no physical meaning
  - Parameters equifinality and uncertainty issues

Gaps - Limited understanding of future climate impact on water balance

Streamflow focus overlooks internal process changes

Spatially distributed models underexplored in nonstationarity No method links model to process shift



# Research Aim and Objectives





### Main Aim:

Investigate how catchment hydrological processes respond to nonstationary conditions using a more process-based spatial hydrological model (SWAT+ model)

Objectives:

- 1. Identify dominant hydrological processes in the catchment
- 2. Understand how these processes shift under varying climatic conditions
- 3. Evaluate the extent to which model simulations reflect these changes by using parameter sensitivity analysis

## Study Area

Legend

Lower

Mulloon Ins



#### Land Use:

60% Forest (*Nature and Conservation*) 35% Grasslands (*Native and Modified*) 5% Others (*Horticulture and Residential*)

#### **Soil Types** (USDA Soil Taxonomy):

53% Entisols with Sandy clay loam texture 44% Alfisols with Sandy clay loam texture 3% Others

#### Hydrogeological Landscapes:

Significant lateral subsurface flow Limited surface runoff → intense rainfall Groundwater fluctuates seasonally

Source: NSW DCCEEW (2016)

### Meaning:

Hydrogelological Landscapes

Butmaroo Range

Moura Creek

Bobbaduck Hills

Mulloon

Palerang

Moderately high infiltration rate → lateral flow (*Alfisols—Forest and upslope*) Floodplain soil allow for lateral flow pathways (*Entisols—Grasslands and Floodplain*)

#### Gauging Stations Leaky Weirs Channels Catchment Bounda Land Use Nature conservation A Managed resource Other minimal use Grazing native vege Production native for Plantation forests Grazing modified pas Dryland cropping Dryland horticulture Irrigated horticulture Intensive horticultu Urban residential Rural residential an 2.5 5 km Other intensive use Mining and waste Water Source: ABARES (2023)

### **Catchment Properties:**

- Temperate climate with a mild summer
- Annual average precipitation: 800 mm
- Elevation: 700-1345 m
- Total area: 15,689 ha

### Hypothesis of Hydrological States



| No. | State            | Description                                                                                                                          | Catchment memory                                                                      | Runoff<br>generation                  | Dominant<br>Process(es)   |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|---------------------------|
| 1   | Dry w/ baseflow  | Dominant baseflow maintains streamflow;<br>lateral flow is minimal due to low soil<br>moisture and unsaturated subsurface<br>layers. | High, slow water<br>release                                                           | Minimal                               | Baseflow                  |
| 2   | Dry w/o baseflow | No or negligible streamflow; lateral flow<br>and baseflow are inactive due to dry<br>conditions and low storage.                     | Weak or exhausted—<br>reduced storage                                                 | Minimal                               | Quickflow (if<br>any)     |
| 3   | Wet w/ baseflow  | Lateral flow dominates during storm events<br>(peak flow) due to saturated soils;<br>baseflow sustains inter-event streamflow        | Strong—storage<br>supports both fast and<br>slow flow components.                     | Saturation<br>excess                  | Quickflow and<br>Baseflow |
| 4   | Wet w/o baseflow | Streamflow is event-driven; baseflow is<br>disconnected or minimal. Lateral/surface<br>flow dominates with quick hydrograph rise.    | Limited—wetting is<br>recent or shallow;<br>deeper connectivity is<br>not established | Predominantly<br>saturation<br>excess | Quickflow                 |
|     |                  |                                                                                                                                      |                                                                                       |                                       |                           |

# Methodology











# Hydrological Signatures



| Process Representation                      | Signatures         | Description                                                                            |
|---------------------------------------------|--------------------|----------------------------------------------------------------------------------------|
| Water partitioning<br>(streamflow and loss) | TotalRR            | Total runoff ratio                                                                     |
| Catchment Storage                           | AverageStorage     | Average storage derived from average<br>baseflow and storage-discharge<br>relationship |
| Baseflow                                    | BFI                | Baseflow derived from separation method divided by total streamflow                    |
| Baseflow recession                          | BaseflowRecessionK | Exponential constant fitted to master recession curve (MRC)                            |
| Infiltration Evenes Flow                    | IE_Effect          | IE Importance                                                                          |
| (Horton)                                    | IE_Thresh          | Threshold to allow IE                                                                  |
|                                             | IE_Thresh_Sig      | IE significance test                                                                   |
|                                             | SE_Effect          | SE Importance                                                                          |
| Saturation Excess Flow<br>(Dunne)           | SE_Thresh          | Threshold to allow SE (amount of rainfall)                                             |
|                                             | SE_Thresh_Sig      | SE significance test                                                                   |
| Storage Depth in relation                   | Storage_Thresh     | Storage depth needed to produce quickflow                                              |
| to runon generation                         | Storage Thresh Sig | Storage depth significance test                                                        |

- Hydrological signatures as representation of actual catchment processes (McMillan et al. 2022)
- Toolbox for Streamflow Signatures in Hydrology in MATLAB (TOSSH; Gnann et al., 2021)

- TotalRR (*ET, GW Recharge, and Streamflow*)
- BFI and RecessionK (GW flow)
  - IE, SE, Storage (Quickflow)

- Overall dataset (2007-2023) helped to identify dominant catchment behaviour → Output 1
- Signatures by climate period → Output 2

# SWAT+: Model Setup



- Model was built using QSWAT+ version 3.00 (SWAT model extension in QGIS)
- The model simulation in RStudio using the R package **SWATrunR** (Schürz, 2023, version 0.9.4)
- Slope classification: 0-8%, 8-30%, >30% (FAO, 1976)
- Limit Hydrologic response units (HRUs) with **15%** threshold (land use and soil type)
- Set stocking grazing → when aboveground biomass exceeds **2000 kg/ha** (typical Australian practice)
- Analysis performed using High Performance Computer (HPC-GADI)
- As a result: 882 HRUs and 149 LSUs



Informatics Hub





# SWAT: Parameterisation



| SWAT+ Parameters | Change          | Range     |  |
|------------------|-----------------|-----------|--|
| cn2.hru          | Percent change  | ±50%      |  |
| cn3_swf.hru      | Absolute change | ±0.5      |  |
| esco.hru         | Absolute value  | 0-1       |  |
| epco.hru         | Absolute value  | 0-1       |  |
| perco.hru        | Absolute change | ±0.5      |  |
| surlag.bsn       | Absolute value  | 0.05 - 24 |  |
| awc.sol          | Percent change  | ±80%      |  |
| k.sol            | Percent change  | ±80%      |  |
| z.sol            | Percent change  | ±50%      |  |
| bd.sol           | Percent change  | ±50%      |  |
| alpha.aqu        | Absolute value  | 0-1       |  |
| flo_min.aqu      | Absolute change | ±50%      |  |
| bf_max.aqu       | Percent change  | ±50%      |  |
| revap_co.aqu     | Absolute value  | 0.02-0.2  |  |
| deep_seep.aqu    | Absolute value  | 0.001-0.4 |  |
| chk.rte          | Percent change  | ±50%      |  |
| chw.rte          | Percent change  | ±50%      |  |
| chd.rte          | Percent change  | ±50%      |  |
| canmx.hru        | Percent change  | ±50%      |  |

- Selected parameters represent hydrological process
- Parameters were spatially-defined based on dominant land use or sub-catchments

$$Q_{out} = Q_{surf} + Q_{lat} + Q_{gw} - T_{loss}$$

### WB component $\rightarrow$ SWAT+ parameter:

 $ET \rightarrow esco, epco$ 

(Qsurf) Surface runoff  $\rightarrow$  cn2, cn3\_swf, surlag, ovn

(Qlat) Lateral flow  $\rightarrow$  latq\_co, **awc**, **bd**, **z**, k

(Qgw) Gw flow  $\rightarrow$  perco, alpha, flo\_min, revap\_co, deep\_seep, **awc**, **bd**, **z** Routing  $\rightarrow$  chk, chd, chw, chn



### Sensitivity Analysis: Sobol Method

![](_page_11_Picture_2.jpeg)

### Result: Dominant Hydrological Process

![](_page_12_Picture_1.jpeg)

| Hydrologic             |        | Unit   |       |         |
|------------------------|--------|--------|-------|---------|
| Signature              | Upper  | Onic   |       |         |
| TotalRR                | 0.21   | 0.28   | 0.20  | -       |
| BFI                    | 0.46   | 0.45   | 0.32  | -       |
| BaseflowRecession<br>K | 0.17   | 0.08   | 0.16  | -       |
| AverageStorage         | 122.67 | 100.07 | 67.01 | mm      |
| IE_effect              | -0.12  | -0.13  | -0.23 | -       |
| IE_thresh              | 13.56  | 15.24  | 9.95  | mm      |
| IE_thresh_sig          | 0.00   | 0.00   | 0.01  | p-value |
| SE_effect              | 0.80   | 0.95   | 0.98  | -       |
| SE_thresh              | 66.98  | 63.46  | 22.04 | mm      |
| SE_thresh_sig          | 0.00   | 0.00   | 0.00  | p-value |
| Storage_thresh         | 49.71  | 50.35  | 30.97 | mm      |
| Storage_thresh_sig     | 0.00   | 0.00   | 0.00  | p-value |

![](_page_12_Picture_3.jpeg)

- ET & deep loss dominate: only 20-28% of rainfall becomes streamflow
- Moderate baseflow contribution: slow flow contributes around 32-46%
- Indication of Leaky Weir effect: slower recession in mid-catchment
- Storage pattern: Highest in upper (forest)
- High infiltration: no significant IE observed
- Dominant SE:

higher threshold indicate good water retention capacity

• SE process → lateral subsurface flow

![](_page_12_Picture_12.jpeg)

### Result: Dominant process by climate conditions

![](_page_13_Picture_1.jpeg)

| Period            | SE_thresh | SE_thresh_sig | TotalRR | BFI  | AverageStorage | RecessionK |
|-------------------|-----------|---------------|---------|------|----------------|------------|
| Millenium Drought | 54.93     | 0.00          | 0.04    | 0.57 | 5.09           | #N/A       |
| Post-Millenium    | 135.50    | 0.00          | 0.27    | 0.63 | 109.23         | 0.06       |
| Tinderbox Drought | 34.71     | 0.00          | 0.02    | 0.40 | 53.14          | 0.20       |
| Post-Tinderbox    | 21.58     | 0.00          | 0.31    | 0.33 | 90.80          | 0.15       |

### Saturation Excess (SE) Dominates:

- Higher SE threshold in wet periods indicate better soil moisture retention
- Lower thresholds during droughts suggest reduced storage
- Lower post-Tinderbox, likely due to bushfire-induced soil degradation

### Higher storage & flow in wet periods:

- TotalRR and AverageStorage are greater in wetter conditions
- Lower recession values indicate slower recession, meaning water stays linger in the system

### Interpretation:

Catchment hydrology is **strongly climate-sensitive** (changing), catchment ability to store water is less in drought and post-droughts show recovery

![](_page_13_Picture_12.jpeg)

## Result: Full SA

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

## **Result: Focused SA**

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_0.jpeg)

Hydrological Period Millennium Drought Post-Millennium Post-Tinderbox Tinderbox Drought Sensitivity index — Si — Ti

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

- Spearman correlation used to assess link between observed rainfall/streamflow and individual parameter sensitivities (Si index)
- No significant correlation found between latq\_co and streamflow during wet periods
- Confirms shift from dominant lateral flow (dry) to multicomponents flow processes (wet)
- Highlights evolving role of
  hydrological drivers under varying
  climatic conditions

19

## Validation

![](_page_19_Picture_1.jpeg)

| period                  | mean   | sd    | median | min     | max   | var   |
|-------------------------|--------|-------|--------|---------|-------|-------|
| Millennium Drought      | 0.238  | 0.275 | 0.168  | -0.984  | 1.998 | 0.076 |
| Post-Millennium Drought | -0.050 | 1.081 | -0.013 | -27.721 | 8.630 | 1.168 |
| Post-Tinderbox Drought  | -0.071 | 2.775 | 0.227  | -38.436 | 3.988 | 7.700 |
| Tinderbox Drought       | 0.103  | 0.169 | 0.048  | -0.479  | 1.016 | 0.029 |

### Simple Calibration Test

- Latin Hypercube Sampling (LHS)  $\rightarrow$  1,000 simulations
- Latq\_co and k only, best parameter set based on KGE, PBIAS, and RIA
- Post-drought: latq\_co shifts from individual (Si) to interaction effect (Ti)
- Higher variance in post-drought → other parameters/processes are needed to be calibrated
- Lateral flow alone is less dominant in wet conditions

![](_page_19_Figure_9.jpeg)

# **Discussion & Conclusion**

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

Mulloon Catchment by Mulloon Institute

### Key Findings

- Both methods (signatures and SA) confirm shift in catchment processes
- Change in hydrological processes depend on groundwater connectivity
- Signatures analysis alone can be misleading
- Temporal SA provides deeper insight into internal process shifts

### Limitations

- Storage parameters heavily influence other parameters
- Parameter interactions should be explored under ample vs. limited storage scenarios
- True sensitivity may lie outside
  predefined parameters bounds
- Infrastructure impacts the analysis in mid and low sub-catchments (e.g., leaky weirs)

### Implications

- SWAT assumes stationary soil properties, struggle to capture non-stationarity
- This result can be used as basis to select/develop model structure to better capture observed processes shift
- Representation of naturebased infrastructure in the model is needed

### Acknowledgement

This research is part of a PhD project funded by:

**Richard Claude Mankin Scholarship** 

The University of Sydney

One Basin CRC

# Thank you

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

![](_page_21_Picture_9.jpeg)

### Datasets

![](_page_22_Picture_1.jpeg)

| Data                                      | Resolution           | Source                                                   |  |
|-------------------------------------------|----------------------|----------------------------------------------------------|--|
| DEM                                       | 30 m                 | Geoscience Australia                                     |  |
|                                           | 50                   | Australian Bureau of Agricultural and Resource Economics |  |
| Land use                                  | 50 m                 | and Sciences (ABARES)                                    |  |
| Soil map                                  | 250 m                | DSOLmap and MapSWAT                                      |  |
| Climate (rainfall, temperature, solar     |                      |                                                          |  |
| radiation, relative humidity, wind speed) | Dally                | Mulloon Institute and SILO                               |  |
| Streamflow                                | Daily (three gauges) | Mulloon Institute                                        |  |

## References

![](_page_23_Picture_1.jpeg)

Bronstert, A., Niehoff, D., & Bürger, G. (2002). Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. *Hydrological Processes*, *16*(2), 509–529. https://doi.org/10.1002/hyp.326

Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., & Hendrickx, F. (2012). Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. *Water Resources Research*, 48(5). https://doi.org/10.1029/2011WR011721

Devanand, A., Falster, G. M., Gillett, Z. E., Hobeichi, S., Holgate, C. M., Jin, C., Mu, M., Parker, T., Rifai, S. W., Rome, K. S., Stojanovic, M., Vogel, E., Abram, N. J., Abramowitz, G., Coats, S., Evans, J. P., Gallant, A. J. E., Pitman, A. J., Power, S. B., ... Ukkola, A. M. (2024). Australia's Tinderbox Drought: An extreme natural event likely worsened by human-caused climate change. *Science Advances*, *10*(10). https://doi.org/10.1126/sciadv.adj3460

Falster, G., Coats, S., & Abram, N. (2024). How unusual was Australia's 2017–2019 Tinderbox Drought? Weather and Climate Extremes, 46, 100734. https://doi.org/10.1016/j.wace.2024.100734

Fowler, K. J. A., Peel, M. C., Western, A. W., Zhang, L., & Peterson, T. J. (2016). Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models. *Water Resources Research*, *52*(3), 1820–1846. https://doi.org/10.1002/2015WR018068

Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J. K., & McMillan, H. K. (2021). TOSSH: A Toolbox for Streamflow Signatures in Hydrology. *Environmental Modelling & Software*, 138, 104983. https://doi.org/10.1016/j.envsoft.2021.104983

IPCC. (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM\_Approved\_Microsite\_FINAL.pdf

Kimbi, S. B., Onodera, S., Wang, K., Kaihotsu, I., & Shimizu, Y. (2024). Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment. *Environments*, *11*(10), 225. https://doi.org/10.3390/environments11100225

McMillan, H. K., Gnann, S. J., & Araki, R. (2022). Large Scale Evaluation of Relationships Between Hydrologic Signatures and Processes. *Water Resources Research*, 58(6). https://doi.org/10.1029/2021WR031751

Peterson, T. J., Saft, M., Peel, M. C., & John, A. (2021). Watersheds may not recover from drought. Science, 372(6543), 745–749. https://doi.org/10.1126/science.abd5085

## References

![](_page_24_Picture_1.jpeg)

Puy, A., Piano, S. Lo, Saltelli, A., & Levin, S. A. (2022). Sensobol : An R Package to Compute Variance-Based Sensitivity Indices. Journal of Statistical Software, 102(5). https://doi.org/10.18637/jss.v102.i05

Saft, M., Western, A. W., Zhang, L., Peel, M. C., & Potter, N. J. (2015). The influence of multiyear drought on the annual rainfall-runoff relationship: An <scp>A</scp> ustralian perspective. *Water Resources Research*, *51*(4), 2444–2463. https://doi.org/10.1002/2014WR015348

Schürz, C. (2022). SWATrunR (0.9.4). https://doi.org/10.5281/zenodo.2630509

Slater, L. J., Anderson, B., Buechel, M., Dadson, S., Han, S., Harrigan, S., Kelder, T., Kowal, K., Lees, T., Matthews, T., Murphy, C., & Wilby, R. L. (2021). Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. *Hydrology and Earth System Sciences*, 25(7), 3897–3935. https://doi.org/10.5194/hess-25-3897-2021

van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., de Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., & Viney, N. R. (2013). The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. *Water Resources Research*, *49*(2), 1040–1057. https://doi.org/10.1002/wrcr.20123

Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J.-M., Viney, N. R., & Teng, J. (2010). Climate non-stationarity – Validity of calibrated rainfall–runoff models for use in climate change studies. *Journal of Hydrology*, 394(3–4), 447–457. https://doi.org/10.1016/j.jhydrol.2010.09.018