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In recent years, as agricultural activities and types of crops have become diverse, the occurrence of
micro-pollutants has been reported more frequently in rural areas. These pollutants have detrimental
effects on human health and ecological systems; thus, it is important to manage and monitor their
presence in the environment. The modeling approach could be an effective way to understand and
manage these pollutants. This study predicts the concentrations of micro-pollutants (MPs) using deep
learning (DL) models, and the results are then compared with simulation results obtained from the soil
water assessment tool (SWAT) model. The SWAT model showed an unacceptable performance owing to
the resulting negative Nash—Sutcliffe efficiency (NSE) values for the simulations. This may be caused by
the limitations of SWAT, which pertains to adopting simplified equations to simulate micro-pe s. In
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Micropollitant and managing MPs in aquatic systems are i ive. MPs can be

Keywords: Micropallutants (MPs) released into aquatic ccosystems have adverse cffects on public health. Hence, monitoring
i high-resoluti

Surrogate method

mass spec-

High resolution mass spectrometry
Deep learning
neural network

addition, the ambiguous plan of pesticide application increased the model uncertainty, thereby deteri-
orating the model result. Here, we developed two different DL models: long short-term memory (LSTM)
and convolutional neural network (CNN). LSTM exhibited the highest model performance, with NSE
values of 0.99 and 0.75 for the training and validation steps, respectively. In the multi-target MP model,

trometry (HRMS) with stable isotope-labeled (SIL) standards. However, high cost of SIL solutions is a significant
issue. This study aims to develop a rapid and cost-effective analytical approach to estimate MP concentrations in
aquatic systems based on deep learning (DL) and multi-objecti We hypothesized that internal
standards could quantify the MP concentrations other than the target substance. Our approach considered the
precision of intra-/inter-day repeatability and natural organic matter information to reduce instrumental error
and matrix effect. We selected standard solutions to estimate the concentrations of 18 MPs. Among the optimal
DL models, DarkNet-53 using nine standard solutions yielded the highest performance, while ResNet-50 yielded

the error decreased as the number of simulated pollutants inereased. The simulation of the four pol- the lowest. Overall, this study demonstrated the capability of DL models for estimating MP concentrations.
lutants had the highest error, while the six-target simulation had the lowest error. In conclusion, {
study demonstrated that the LSTM model has the potential to improve the prediction of MPs in aquatic
systems.

© 2021 Elsevier Ltd. All rights reserved.
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Micropollutants and Challenges

Micropollutant (MP)

« Alarge number of organic chemicals are termed as “micropollutants” due to their low concentrations (ng/L to pg/L).

« ltis also referred to as emerging pollutants, and emerging contaminants.
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Challenges of MPs in aquatic systems
@A&' Aquatic
- Some of MPs have high persistence, bioaccumulation, and biomagnification. w ey S
* Long-term exposure to MPs can cause immunological disorders and ecosystem = :\ g /;5
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« Itis necessary to monitor and analyze MPs to prevent damage to ecosystem. o NS }_/




Micropollutants and Challenges

Stormwater Quality

Stormwater Runoff
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Runoff from Roof Surfaces
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Urban Stormwater Pollution

« Referring to the contamination of water bodies,

such as rivers, lakes, and streams, as a result of rainfall

’ ¢ '
.
. ¢ and runoff in urban areas.
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) > = ) i‘ It occurs when rainwater flows over impervious surfaces,
= , picking up pollutants and carrying them into waterways.
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Storm Drain Inlet Gutter and Street Runoff  _ 9.8 0T T g R
Sources of Urban Stormwater Pollution

a. Point Sources
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—————————— S e f@\ s ° Industrial discharges, municipal sewage systems,

————————————————— =L Storm Drain System illicit connections
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_n b. Non-Point Sources:
Storm Drain Outlet A
rﬁ ( . \¥/ W - Runoff from roads, highways, residential areas,

construction sites, etc.

Water Body
* Stormwater runoff ends up in

local creeks, streams, lakes,
Gtrors rivers, and /or the ocean. Source: CCCleanwater



Micropollutant in urban stormwater

e - MPs from Non-point source

Anthropogenlc indicators \

+ Diffuse pollution from multiple sources,

making it challenging to pinpoint specific
)\ ,> )]\ /O/ a Q\ origins.

Common non-point sources are:

Dominant MPs in
Caffelne Acetaminophen Carbamazeplne Benzotriazole

o

Agricultural runoff

Gwangpyeong-stream, Korea

Hazard MPs with low degradation Pesticides, fertilizers, and veterinary
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(Yunetal,, 2025) P A pharmaceuticals from crop fields and livestock
I I I H3C\O operations.
_:EF F Z /O—P\/\— °, /,' b. Urban runoff
T HC O CHs // Chemicals from road surfaces, parking lots,
PFOA PFOS  PFNA JJLTSL'L‘{L // and residential areas.
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Potential strategies for treating and managing MPs in urban stormwater

1. Stormwater treatment systems: Constructing treatment facilities to remove micropollutants before discharge into water bodies.

2. Green infrastructure: Vegetated swales, constructed wetlands, and biofiltration systems that help filter and retain micropollutants.

3. Implementing stricter regulations and monitoring programs to control micropollutant discharges from industrial and municipal sources.
4

Establishing watershed management plans to address non-point source pollution and promote best management practices. UrisT
“uLsAN naTionaL siTuTe 0O
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Management strategies

Water quality modeling in urban area

Urban Wet Weather Flews

* The Stormwater Management Model (SWMM) developed by the
Environmental Protection Agency (EPA) is a widely used software
tool for analyzing and managing stormwater runoff.

«  SWMM helps simulate the hydrologic and hydraulic processes
associated with stormwater runoff, allowing for the evaluation of

various stormwater management strategies.

First flush effect (FFE) of MPs

Surface flow

T  The FFE refers to the initial runoff from a

rainfall event that contains a higher

ERe— concentration of pollutants compared to

uonejdisaig

subsequent runoff.

* During dry periods, pollutants accumulate

on impervious surfaces, such as roads and
Sampling time

rooftops.

When it rains, the first flush carries these accumulated pollutants

into storm drains and water bodies.

Low Impact Development (LID)

An approach to land development and stormwater management that
aims to mimic natural hydrological processes and minimize the
impact of urbanization on the environment.

LID emphasizes the use of decentralized, small-scale practices to
manage stormwater at its source, promoting infiltration,

evapotranspiration, and pollutant removal.



2. Methods and
Materials




Research overview

(A) Micropollutant monitoring and modeling

(B) Rainfall scenario analysis

Stormwater sampling and analysis

Collecting hourly precipitation data for 30 years
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Micropollutant quantification

Calculating coefficient of variation (Cv)

N

/

Build SWMM model

L/

|

Cv=1 NO
YES

|% Flow rate calibration

Micropollutant calibration

Determining IETD, rainfall duration, and amount

—hse>05

YES

L
(B)

A4

Estimating Huff curve of 50% probability

i

Determining representative rainfall patterns

(C) Low impact development application and first flush analysis

LID types
% Pavement
Soil =" Soil
Storage Storage
BC PP

— 3

RB

> MP load (ug) FF curve MFF ratio

N

Analysis of pollutant reduction effect using LID

N

4

Run SWMM model with LID controls

Determining the best type and size of LID




Study area
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Gwang-Pyeong Stream
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MP monitoring

Hydrologic Monitoring
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Stormwater sampling

* A composite sampler, the AS950 (HACH Lange GmbH,

Colorado, USA) was implemented to obtain stormwater sample

« Wet (rainfall > 1.0/day) weather: 15min interval

* Dry weather: 1h — 3h interval

1L collection in PE bottles

« Electronics manufacturing involves chemicals like PFASs.

» Pharmaceutical pollutants like metformin and acetaminophen are also present.

* Chemicals discharged through surface runoff and diffusion.




SWMM model — Flow rate simulation
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Figure. Along the Gwang-pyeong stream, the sampling site is located downstream
(red marker), surrounded by residential and industrial areas. The weather station is

located in upstream of the study area.

Water quality component

Hydrologic Component

To estimate rainfall-runoff processes, the modified
Green-Ampt infiltration method was applied.
SWMM simulates runoff from rainfall, infiltration,

evaporation, and depression storage.

Hydraulic Component
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The dynamic wave method was selected to consider
flow routing, pipe capacities, flow velocities, and the
interaction between different components of the
stormwater system.

SWMM also simulates the flow of stormwater through
drainage systems, including pipes, channels, and

storage facilities.

«  SWMM incorporates water quality simulations to assess the impacts of stormwater runoff on receiving water bodies.

* It can model pollutant build-up on surfaces, wash-off processes, and pollutant transport through the stormwater system.

"



SWMM model — MP simulation

Rainfall events for simulation

t. the build-up time interval (days)

B,,..: possible maximum build-up of the pollutant

Kg: the build-up rate constant

Ng: the build-up time exponent

Event 1 Event 2 Event 3 Event 4
Start 07/05/2021 12:00 08/01/2021 12:00 08/31/2021 13:00 09/06/2021 12:00
End 07/06/2021 23:59 08/02/2021 01:59 09/01/2021 16:59 09/07/2021 05:59
Rainfall duration (hours) 15 8 9 5
Rainfall volume (mm) 66.8 47.5 37.1 9.5
Mean intensity (mm/h) 4.5 5.6 4.1 1.9
Antecedent dry days 0.87 11.67 1.50 2.60
Build-up process Wash-off process
bpow = Min(Byqy, Kpt"E) Power (1) Wexp = Kwq"Wwmp Exponential ~ (4)
Dexp = Bmax(1 — e7¥5%) Exponential ~ (2) Wre = Ky Q"W Rating curve  (5)
bsar = Bnaxt/(Kg + t) Saturation  (3) Weme = KwafiuA EMC (6)

Q: the flow rate (cfs)

* q: the runoff rate over the subcatchment (in/hr).
* Ky the wash-off coefficient

* N, the wash-off exponent

* mg: the initial mass of the constituent on the surface at time (exponential).

12



MP management strategy: Rainfall scenario analysis

Representative rainfall

Inter-Event Time Definition (IETD): Huff Curve:
 |ETD determines the minimum duration between two « The Huff curve, introduced by Huff in 1967, was applied to obtain
consecutive rainfall events, which plays a significant role in representative rainfall patterns.
analyzing rainfall patterns (Driscoll et al., 1989). * It helps determine the quartiles of 50% probability of cumulative rainfal
Coefficient of Variation (CV) Analysis: (Park et al., 2018).
« CV analysis is utilized to select appropriate IETD. Data Collection and Analysis:
« This statistical method is based on probability density and * Hourly rainfall data from 30 years (1992-2021) in Gumi-si (KMA) was
resembles the exponential distribution (DolSak et al., 2016). collected.
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MP management strategy: First flush analysis

First flush (FF) analysis

Definition
« The FFE of a pollutant is defined by the pollutant load discharged
during the initial part of the rainfall period, in which the cumulative
pollutant mass is larger than the cumulative rainfall runoff.
* Forurban and industrial areas, FFE analysis is required to

understand build-up and wash-off processes.
Mass first flush (MFF)
L'= [ C(t) x Q(Odt /M

V' = [yQ®dt /v
MFF, =LV’

* L’: the normalized cumulative pollutant mass for each time t
* V': the normalized cumulative runoff volume at each time t
+ C(t): the MPs concentration

*  Q(t): the runoff volume at time t

« M and V: the total chemical mass and total runoff volume

MFF

MFF from observed MPs
(A)
4

[ Total mass load
Surface runoff load

¥

x K

X xx

¥ D% )

&

: XE%
S BN B
5 3 o o X

X

(B)

X

%

X

X

HKXX X

X

gxx

MFF,, MFF,, MFFy,

MFF,, MFF,, MFFy,

Figure. Calculated MFF10, MFF20, and MFF30 values for
(A) event 1 and (B) event 3. In event 3, the FFE pattern of
each chemical usage group (i.e., pharmaceutical, industrial,
and pesticide) differed significantly from that of event 1.
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MP management strategy: LID

LID modules in SWMM

LID types — ] LID Parameters BC PP RB

o7 % Pa‘g?g’ﬂenf - s Surface Berm Height (in) 5 0 -

Storage Storage arre Vegetation Volume Fraction 0 0 -

BC PP RB VS Surface Roughness (n) 01 04 -

. . _ _ Surface Slope (percent) 0 1 -
Bioretention Cell (BC) capture and treat stormwater through filtration, Swale side slope - - i
infiltration, and biological processes. Pavement ~ Thickness (in) -9
Void Ratio (Voids/Solids) - 012 -

« Shallow depressions with engineered soil and vegetation. Imperv.!:-ractllon . 0 -
Permeability (in/hr) - 19.7 -

«  Remove pollutants and recharge groundwater. Clogging Factor - 91
Regeneration Interval - 0 -

Pervious Pavement (PP) allows stormwater infiltration through the pavement. Regeneration fraction - 0 -
Soil Thickness (in) 275 18 -

- R rface runoff and encour roundwater recharge. Porosity 05 05 -
educes surface runoff and encourages groundwater recharge Field Capacity 02 02 .

. Wilting Point 01 041 -
Filters pollutants through permeable layers. Conductivity (in/hr) 05 05 -
Rain Barrel (RB) collects and stores rooftop rainwater. Conductivity Slope 1010 -
Suction Head (in) 35 35 -

« Reduces stormwater runoff and demand on municipal water supplies. Storage ~ Thickness (in) 1.8 118 29.52

Void Ratio (Voids/Solids) 06 0625 -

« Alleviates pressure on stormwater infrastructure. Seepage Rate (in/hr) 004 004 -
Clogging Factor 7042 7042 -

Vegetative Swale (VS) promotes infiltration and filtration. Drain Flow Coefficient 6 0 0
9 ( ) P Flow Exponent 05 05 05

. Offset (in) 0 0 0
Shallow, vegetated channels for stormwater conveyance and treatment. Drain Delay (hr) S

) Open Level (in) - -
* Vegetation removes pollutants and reduces runoff volume. Closed Level (in) ] ] |




Sensitivity analysis and model evaluation criteria

LH-OAT method

LH-OAT = Latin Hypercube (LH) sampling
+ One-factor-At-a-Time (OAT)

Combination of One-factor-At-a-Time (OAT) design and Latin
Hypercube (LH) sampling by taking LH samples as initial points for
an OAT design.

s

| ©)
pi M‘E‘E)

5

e

) -
)

Figure 3 lllustration of LH-OAT sampling of values for a two parameters model where X
represent the Monte-Carlo points and « the OAT points (van Griensven ef al., 2004).

Model evaluation

Coefficient of determination (R?)

2
R2 — Z?’:ﬂpi_Pmean)z(Oi_omean)z (8)
\/Z?:ﬂpi_Pmean)z\/Z?zl(oi_omean)z

Root mean square error (RMSE)

N P2
El:l(ol Pl) (9)

RMSE =
N

Nash-Sutcliffe efficiency (NSE)
N (p._0.
z:i=1(Pl 01)2 (1 0)

N
Zizl(oi_omean)z

NSE =1 —

O; and P; are the observed and predicted value at time step i.

* O,ean @nd P,.., are the mean of observation and prediction,

respectively. N is the number of samples.

+ These criteria have been used for comparing the predicted and
observed values (Nash and Sutcliffe, 1970; Ritter and Munoz-Carpena,

2013).

16




3. Results and
Discussion




MP monitoring

Characteristics of micropollutants in stormwater

MP name Class Min (ng/L) Mean (ng/L) Max (ng/L) DF (%)
Caffeine Pharmaceutical 59.6 1015.6 3369.8 100
9H_PFNA PFCs 106.0 523.0 2707.6 100
Trimethyl phosphate OPFRs 20.1 123.1 20115.0 100
Carbamazepine Pharmaceutical 16.1 124.3 385.3 100
PFOS PFCs 3.3 10.1 74.2 100
Acetaminophen Pharmaceutical 150.7 695.0 3051.7 100
PFOA PFCs 4.4 11.4 18.7 100
Benzotriazole Industrial chemical 272.2 1350.0 5156.3 100

 BTR (Benzotriazole): High mean concentration (1350.04 ng/L), indicating urban anthropogenic activities (Tran et al., 2019).

+ PFOS (Perfluorooctane sulfonate): Lowest mean concentration (10.11 ng/L), environmental concerns due to persistence (Kim and Kannan,
2007; Xiao et al., 2012; Zushi and Masunaga, 2009).

«  9H-PFNA (Nonanoic acid perfluorononylethyl ester): Highest mean concentration (523 ng/L) observed in a street sweep study (Ahmadireskety

et al., 2021).

 ACT, CFN, and CBZ: Mean concentrations of 695.03 ng/L, 1015.61 ng/L, and 124.30 ng/L, respectively, detected in the Nakdong river,

indicating wastewater contamination (Park and Jeon, 2021; Yun et al., 2022).

+ Persistence and dominance of micropollutants confirmed in the catchment (MFF30 values > 1) (Yun et al., 2023).

18




Sensitivity analysis for water quantity and quality simulation

Table 4. Range of hydrologic and micropollutant parameters during the sensitivity analysis, and calibrated parameter values.

Variable Parameters [min, max] Calibrate Rank
d value
. _ _ [0.001,
N-Imperv Manning’s n of impervious area 0.05] 0.015 1
N-Perv Manning'’s n of pervious area [0.005, 0.5] 0.40 6
S-Imperv Depth of depression storage on impervious area 0.01, 1] 0.098 4
(mm)
Hvdroloai S-Perv Depth of depression storage on pervious area (mm) [0.01, 1] 0.16 8
ydrologic . . , ,
module Pct-Zero Percent of the impervious ar;aa with no depression (10, 100] 98.85 3
storage (%)
Suction Average capillary suction [0.1,10] 1.87 9
Hycon Saturated hydraulic conductivity [0.01, 5] 3.09 5
IMDmax Maximum infiltration rate [0.001, 0.2] 0.13 7
ConduitN Conduit Manning’s n (concrete) [%%%] 0.013 2

* Most sensitive parameter: N-Imperv (Manning's roughness coefficient of impervious subareas), followed by ConduitN (Manning's
roughness coefficient of pipelines), PctZero (percentage of impervious area without depression storage), and S-Imperv (depression
storage in impervious surfaces).

* N-Imperv and ConduitN affect flow routing, while PctZero and S-Imperv relate to depression storage, influencing the hydrograph
shape and exhibit inverse effects on runoff volume (Rossman, 2010a).

* Other parameters (Ksat, N-Perv, IMD, S-Perv, Suction) had lower ranks but adjusted for their importance in infiltration calculations.

+ Impervious surface parameters have a significant impact on the model's output.

19



Flow rate simulation
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Underestimated flow rate and the faster time of simulated discharge than the observation.

« Simulating the arrival of peak flows and their instantaneous timing poses challenges due to hidden factors like sewer

inlets and buried pipelines (Fassman-Beck and Saleh, 2021).
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MP simulation

Sensitivity analysis

Variable Parameters [min, Calibrated Rank
max] value
Build-up Build-up function - EXP, SAT 4
C1(B) Maximum build-up possible [0, 30] 1.08-4.05 3
Pollutant build- C2(B) Half saturation constant [0, 1] 0.3-0.68 6
up/wash-off Wash-off Wash-off function - RC 1
C1(W) Wash-off coefficient [0, 30] 0.64-26.51 5
C2(W) Wash-off exponent [0, 10] 0.49-1.24 2
Build-up/Wash-off parameters for each MP
Build-up Wash-off
MP name C1(B) C2(B) C1(W) C2(W)
Function Function
Caffeine SAT 2.05 0.3 RC 24 .51 0.99
9H-PFNA SAT 2.05 0.3 RC 9.51 1.24
Carbamazepine SAT 2.05 0.55 RC 7.89 0.77
Acetaminophen SAT 2.05 0.30 RC 26.51 0.49
Trimethyl phosphate SAT 4.05 0.55 RC 13.51 0.49
PFOS SAT 2.05 0.30 RC 26.51 0.49
PFOA EXP 1.08 0.34 RC 0.64 0.71
Benzotriazole SAT 2.05 0.68 RC 25.76 0.86

Wash-off function and C2(W) were identified as
the most sensitive parameters for micropollutant
output.

C2(B) showed the least sensitivity among the
parameters analyzed.

Rating curve wash-off function was used to
estimate pollutant transport, considering the
interrelation between pollutant surface runoff and
wash-off.

Each MP has the different coefficient (C1) and
exponent (C2) values for saturation build-up
and rating curve wash-off.

Previous studies have applied this methods to
investigate the behavior of pollutants in
impermeable areas (Gulbaz and Kazezyilmaz-
Alhan, 2012; Gulbaz et al., 2019; Palli et al., 2021;
Wicke et al., 2012), but not MPs.
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MP simulation
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« The micropollutant modeling underestimated the observed loadings, mainly due to similar tendencies in flow rate

results, which directly impact pollutant loadings.
« CFN showed the highest performance with an R? value of 0.74 and NSE value of 0.67, while CBZ and BTR had
the lowest R? values of 0.43 and 0.47, and NSE values of 0.37 and 0.36, respectively.
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MP simulation
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« Satisfactory performance was observed in predicting all micropollutants for events 1 and 3, with NSE values above 0.35.

+ Events 2 and 4 had lower NSE values, indicating limited simulation results due to rapid runoff increase and small rainfall

amounts, respectively.
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LID simulation

MFF30 for rainfall scenarios

LID size (%)

Representative rainfall Micropollutant MFF30 BC PP RB VS
Caffeine 1.114 1.8 20 064 27

o 9H-PFNA 1.061 1.6 1.7 058 22

Trimethyl phosphate 1.18 1.0 11 032 1.6

Qs Carbamazepine 1.07 1.0 1.0 030 14

Trimethyl phosphate 1.22 1.0 11 034 14

Q4 Carbamazepine 1.09 09 1.0 0.30 1.3

* The initial MFF30 ratio for TMP under Q4 was 1.22, indicating that 36.6% of the pollutant mass was transported by the first 30% of runoff volume.

* Increasing the size of LID applications resulted in a decrease in the MFF30 ratio, indicating a reduction in the first flush (FF) effect.

« Bioretention cells and pervious pavement showed similar decreasing patterns in the FF effect and treated approximately 1.0% to 1.1% of

subareas.

« Rain barrels, with an application size of 0.34% of subareas, exhibited a decreasing FF effect similar to bioretention cells and pervious pavement.

+ Vegetative swales, with the largest construction size of 1.4%, had lower effectiveness but the lowest maintenance cost among the LID facilities

studied.

» The effectiveness of LID measures depends on factors such as catchment condition, hydraulic properties of the facilities and catchment, and

considerations of dispersion, detention, and lag time.
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LID simulation

Simulation result of bioretention for TMP
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4. Conclusion




Conclusion

Summary

The SWMM model demonstrated acceptable performance in simulating flow rates and micropollutants in urban stormwater,
with NSE values > 0.5 for three out of four rainfall events.

Sensitivity analysis identified key parameters influencing water quantity and quality simulations, highlighting the importance
of roughness coefficients and wash-off functions.

Caffeine showed the highest simulation performance among micropollutants, while Carbamazepine and Benzotriazole
had lower performance across all rainfall events.

Representative rainfall patterns with larger FF effects were selected as 4th quartile for LID design and analysis.

LID applications demonstrated the potential to mitigate micropollutants, with larger sizes resulting in lower MFF30 values.

The SWMM model provides a valuable tool for predicting MP loadings, estimating FF effects, and assessing the

effectiveness of LID measures in reducing MP runoff risks in urban areas.

Challenges

Further model development is needed to improve accuracy and address uncertainties related to pollutant transport
processes such as adsorption, desorption, and resuspension.

More mathematical solutions are required to enhance the precision of MP estimation in urban stormwater.

These challenges should be considered for future research and refinement of the SWMM model to enhance its

applicability and reliability in assessing and managing micropollutants in urban stormwater systems.
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