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• characterized by a low density of stations, resulting in limited data coverage across 
the country.

• Uneven distribution of stations, with fewer stations in higher Himalayan 
regions, poses challenges in capturing comprehensive climate data.

Low Density of Stations:

• The majority of meteorological stations are situated on foothills, leading to data 
inconsistencies and limited representation of higher elevation climate patterns.

• Difficulties in operating and maintaining stations, particularly in remote and 
inaccessible areas, contribute to gaps and poor data quality.

Geographical Constraints:

• Meteorological stations in higher regions often experience data gaps and 
discontinuities, primarily due to challenging terrain and adverse weather conditions.

• Inadequate infrastructure and technical constraints further contribute to the 
intermittent and incomplete nature of data collection in these regions.

Gaps in Data Collection:

• Insufficient and uneven meteorological data coverage hinders accurate climate 
assessments.

Implications for Decision-Making:
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Hydrological models like SWAT often underperform in mountainous basins due to sparse 
ground data, complex terrain, and difficulty capturing low-flow and peak-flow events.

Pure machine learning models improve accuracy but lack physical interpretability, 
making them unreliable for hydrological decision-making and transferability.

There is a critical need for a hybrid modeling approach that combines the strengths of 
physics-based models and remote sensing-driven machine learning to improve both 
prediction accuracy and interpretability.
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Enhance
Enhance SWAT streamflow simulations by integrating a residual 
correction layer using machine learning models (RF, XGBoost, LSTM, 
PG-LSTM).

Leverage
Leverage remote sensing products (GPM, MODIS NDVI, LST) to 
improve spatial and temporal representation of hydrological drivers 
in data-scarce basins.

Ensure
Ensure model interpretability and transferability by applying SHAP to 
quantify the contribution of each input and enable transparent 
decision-making in complex mountainous terrain.
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Step 1: Calibrate SWAT 
using ground-based 

rainfall, ET, temperature, 
and observed streamflow 

at outlet

Step 2: Extract satellite-
derived products (GPM, 

MODIS NDVI, LST)

Step 3: Compute 
residuals = observed – 

SWAT simulated 
streamflow

Step 4: Train ML models 
(RF, XGBoost, LSTM, PG-

LSTM) to predict 
residuals using RS inputs

Step 5: Correct SWAT 
output using ML 

predictions

Step 6: Evaluate models 
using NSE, KGE, 

RMSE,PBIAS

Step 7: Apply SHAP for 
interpretability (only for 

RF/XGBoost)
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𝑆𝑆𝑆𝑆0= Initial Water content (mm)

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑= Amount of rainfall on day i. (mm)

Qsurf = Surface runoff on day i(mm)

Ea= Amount of Evapotranspiration on day i(mm) –Hargreaves

Wseep= Amount of water percolating on day i. (mm)

Qgw= Amount of return flow on day i. (mm)

T= time (days)

Figure. Location of Study Area

1. Model Setup
• Precipitation data from 5 stations
• Temperature data from 3 stations

2. Calibration Period (2002-2011)
• Warm-up period (2000-2001)
• SWAT-CUP - initial parameter calibration

SWAT Model

3. Validation Period (2012-2019)
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Model Description Purpose Key Input Features

 Ensemble of decision trees trained on 

random subsets of data and features

 Reduces overfitting through averaging

 Handles complex nonlinear 

relationships well. 

 Learns the residuals (Observed 

− SWAT) to correct SWAT bias

 Provides robust post-

processing across all flow 

regimes. 

o SWAT-simulated streamflow

o  Observed precipitation

o  Satellite precipitation (GPM)

o  Vegetation index(MODISNDVI)

o   Evapotranspiration

 Boosting-based model that builds trees 

sequentially to reduce residuals

 Incorporates regularization to prevent 

overfitting. 

 Efficient and highly accurate on 

structured/tabular data.

 Refines SWAT predictions with 

strong emphasis on low- and 

high-flow events. 

 Learns complex correction 

patterns from remote sensing 

and observational data

o SWAT-simulated streamflow

o  Observed precipitation

o  Satellite precipitation (GPM)

o  Vegetation index(MODISNDVI)

o   Evapotranspiration

XGBoost (Extreme 
Gradient Boosting)

Random Forest (RF)

6



Model Description Purpose Key Input Features

LSTM
(Bidirectional Long Short-Term 
Memory)

 Uses two stacked bidirectional LSTM 

layers to capture both forward and 

backward temporal dependencies. 

 Learns directly from observed 

streamflow sequences without applying 

physical constraints. 

 Final dense layer outputs streamflow 

predictions from remote sensing and 

climate inputs.

 Predicts full streamflow directly from 

remote sensing and observational 

datasets.

 

 Useful in data-driven forecasting 

where physical simulations are absent or 

unreliable..

 Observed precipitation (PCP) 

 Satellite precipitation (GPM) 

 Vegetation index (MODIS NDVI) 

 Evapotranspiration

PG-LSTM
(Physics-Guided Long Short-Term 
Memory)

 LSTM network optimized with dropout, 

batch normalization, and hyperparameter 

tuning. 

 Learns log-residuals between 

observed and SWAT-simulated flows. 

 Combines physical consistency 

(SWAT) with data-driven correction using 

residual learning.

 Post-processes SWAT output by 

learning model errors. 

 Preserves hydrological realism and 

improves predictions in both low and high 

flow periods. 

 Emphasizes monsoon and high-flow 

periods using a weighted loss function.

 SWAT-simulated streamflow 

 Observed precipitation (PCP) 

 Satellite precipitation (GPM) 

 Vegetation index (MODIS NDVI) 

 Evapotranspiration 
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Parameter_Name Fitted_Value Min_value Max_value
1:R__CN2.mgt -0.198 -0.349 -0.184
2:R__CN2.mgt -0.216 -0.256 -0.156
3:V__ALPHA_BF.gw 0.626 0.435 0.837
4:V__GW_DELAY.gw 206.941 132.410 261.580
5: V__GWQMN.gw 2294.074 1804.000 3390.000
6:R__CH_N1.sub -0.012 -0.169 0.022
7:R__CH_N2.rte -0.011 -0.054 0.149
8:V__TLAPS.sub -9.031 -10.000 -6.500
9:V__SURLAG.bsn 12.878 8.217 14.717
10:R__SOL_BD(..).sol 0.155 -0.009 0.161
11:R__GW_SPYLD.gw -0.001 -0.043 0.042
12:R__OV_N.hru 0.036 0.000 0.230
13:V__SNOCOVMX.bsn 165.542 135.040 205.160
14:V__GDRAIN_BSN.bsn 66.698 60.405 76.178
15:R__SOL_K(..).sol -0.018 -0.111 0.091
16:R__SOL_AWC(..).sol 0.009 0.006 0.020
17:V__LAT_TTIME.hru 22.704 21.297 63.918
18:V__GW_REVAP.gw 0.098 0.070 0.118
19:V__REVAPMN.gw 356.354 310.480 436.856
20:V__SFTMP.bsn 1.5 -0.166 3.500
21:V__SMTMP.bsn -0.950 -2.218 0.594
22:V__TIMP.bsn 0.602 0.444 0.749
23:V__SMFMX.bsn 3.451 2.537 4.537
24:V__SMFMN.bsn 3.627 2.713 4.537
25:V__RCHRG_DP.gw 0.505 0.378 0.611
26:V__ESCO.bsn 0.275 0.097 0.349
27:V__EPCO.bsn 0.247 0.116 0.324
28:V__SNO50COV.bsn 0.646 0.620 0.807
29:V__CANMX.hru 7.069 0.000 53.150
30:R__SOL_Z(..).sol 0.245 -0.041 0.279
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Figure 2 (a)Daily Simulated and observed hydrograph for validation (2012-2019) period. (b) Scatter plot of simulated and observed discharge. (C) Monthly Simulated and observed hydrograph for validation (2002-2011) period. (d) FDC of observed and simulated flow. 

Statistic Mean Flows(m3/s)
Standard Deviation

(m3/s)
Performance Indicators

Observed Simulated Observed Simulated NSE PBIAS RSR KGE

Validation 
(2012-2019) 66.28 60.78 71.07 66.77 0.77 8.29% 0.48 0.85

2. SWAT Modelling: Validation

Statistic Mean Flows(m3/s)
Standard Deviation

(m3/s)
Performance Indicators

Observed Simulated Observed Simulated NSE PBIAS RSR KGE

Calibration 
(2002-2011) 70.04 62.74 80.39 68.25 0.77 10.41% 0.48 0.78

1. SWAT Modelling: Calibration 

Figure 1 (a)Daily Simulated and observed hydrograph for calibration (2002-2011) period. (b) Scatter plot of simulated and observed discharge. (C) Monthly Simulated and observed hydrograph for calibration (2002-2011) period. (d) FDC of observed and 
simulated flow. 
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SWAT-LSTM
RMSE: 33.190 
R²: 0.782 
NSE: 0.782 
PBIAS: -3.31% 
KGE: 0.887

LSTM
RMSE: 36.721 
R²: 0.733 
NSE: 0.733 
PBIAS: 8.24% 
KGE: 0.835 
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Preliminary Conclusion 

 Hybrid Modeling Advantage

→ Successfully integrated process-based 
(SWAT) and data-driven models (ML/DL) to 

enhance streamflow prediction in a Himalayan 
basin.

 Power of Remote Sensing

→ Leveraged multi-source RS data—GPM 
precipitation, MODIS NDVI to enrich input 
features and compensate for sparse ground 

observations.

 SWAT Baseline Insights

→ Captured seasonal variability but 
underestimated peak flows and lagged in 

timing—especially during monsoon periods.

 ML Residual Correction Performance

→ Random Forest showed the best overall 
statistical metrics (e.g., RMSE, NSE, KGE).

→ XGBoost excelled in monsoon dynamics, 
better aligning with peak flow timing and 

magnitude.

 Strength of PG-LSTM (Physics-Guided 
LSTM)

→ Trained on log-residuals between observed 
and SWAT flows, PG-LSTM retained physical 

consistency while improving predictive 
accuracy.

→ Outperformed standalone LSTM, with lower 
bias and higher NSE/KGE.

 Key Takeaway

→ The study highlights the value of hybrid, 
remote sensing-informed models for 

improving streamflow predictions—critical for 
climate resilience, water planning, and 
hydropower development in data-scarce 

regions.
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Future Directions 

 Explainable AI for Hydrology

→ Apply SHAP (SHapley Additive Explanations) 
to interpret feature importance and 
understand the role of remote sensing inputs 
in streamflow correction across ML models.

 Model Transferability to Ungauged Basins

→ Test model robustness in ungauged or 
sparsely monitored catchments, exploring 
generalization across diverse topographic and 
climatic conditions.

 Integration with Climate Projections

→ Incorporate bias-corrected CMIP6 GCM 
outputs into the PG-LSTM framework to enable 
future streamflow prediction and support 
climate adaptation planning.

 Operationalization for Water 
Infrastructure

→ Translate model outputs into real-time or 
scenario-based decision support tools for 
hydropower design, reservoir operation, and 
flood forecasting in data-scarce Himalayan 
regions
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Thank you for your attention

Question & Answer
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Feedbacks and further queries are appreciated @ 
shikshyabastola17@gmail.com



LSTM MODEL:
• To develop a Long Short-Term Memory (LSTM) network capable of directly predicting observed streamflow, with a specific focus on improving the accuracy of flow predictions by 

utilizing a specialized loss calculation during model training.

Section Details

1. Data Preparation & Preprocessing 

Inputs: Observed streamflow, meteorological variables (rainfall, temperature) 
Target Variable: Observed streamflow 
Scaling: MinMaxScaler (0–1) 
Sequence Creation: 30 day rolling window for LSTM input format

2. Train-Test Split 
Training Set: 2002- 2011 
Testing Set: 2012-2019
Preservation: SWAT and observed streamflow retained for evaluation

3. LSTM Model Development 
Architecture: 1 LSTM layer, dropout (0.0–0.4), final Dense layer for residual output 
Optimization: RandomSearch (10 trials), learning rates [1e-2, 1e-3, 5e-4, 1e-4] 
Training Strategy: MSE loss, Adam optimizer, EarlyStopping. 

4. Prediction & Hybridization 
Best Model Selection: Based on lowest validation loss 
Prediction: Inverse-transform and clip negative values 
Post-processing: Ensure physically realistic (non-negative) flow values

5. Model Evaluation Test Metrics: RMSE, R², NSE, PBIAS, KGE:



Hybrid SWAT-LSTM MODEL:
• To improve the accuracy of streamflow simulations by synergistically combining a physically-based hydrological model (SWAT) with a data-driven Long Short-Term Memory 

(LSTM) network. 
• The LSTM component aims to learn and correct the systematic errors or residuals present in the initial SWAT model outputs, leading to a more robust and precise final 

prediction.
Section Details

1. Data Preparation & Preprocessing 

Inputs: Observed streamflow, SWAT output, meteorological variables (Rainfall, temperature, ET)
Target Variable: Residual = Observed − SWAT Simulated 
Scaling: MinMaxScaler (0–1) 
Sequence Creation: 30-day rolling window (lookback) for LSTM input format

2. Train-Test Split 
Training Set: 2002- 2011 
Testing Set: 2012-2019
Preservation: SWAT and observed streamflow retained for evaluation

3. LSTM Model Development 
Architecture: 2 LSTM layers, dropout (0.0–0.4), final Dense layer for residual output 
Optimization: RandomSearch (10 trials), learning rates [1e-2, 1e-3, 5e-4, 1e-4] 
Training Strategy: MSE loss, Adam optimizer, EarlyStopping. 

4. Prediction & Hybridization 
Best Model Selection: Based on lowest validation loss 
Residual Forecasting: Applied on test set, inverse transformed 
Final Output: Predicted Flow = SWAT Simulated + LSTM Predicted Residual

5. Model Evaluation Test Metrics: RMSE, R², NSE, PBIAS, KGE:
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