►USGS A framework to compare waterbalance components, streamflow, and nutrient export from CONUSscale watershed models, applied to the Illinois River Basin

International SWAT Conference – Strasbourg, France

Katie Merriman, USGS NY WSC Hedeff Essaid, USGS WMA Dale Robertson, USGS UMID WSC Mike White, USDA-ARS Raghavan Srinivasan, TX AMU Jeff Arnold, USDA-ARS July 2024

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

U.S. Department of the Interior U.S. Geological Survey

USGS Need - Methods and Tools for Assessing National and Regional Water Availability

Willamette River Basin

Willamette

Adapted from Van

Metre et al, 2020,

The SECURE Water Act tasked the USGS with assessing water availability - quantity and quality of water for both human and aquatic ecosystem needs

Water Supply

Primary Components Surface Water: Groundwater: streamflow recharge runoff storage snow water Reservoirs

equivalent storage precipitation evapotranspiration

soil moisture

Water Quantity

Water Quality

storage

Groundwater: salinity nutrients

Water Use **Primary Components**

Water Demand

Withdrawal and consumption for: public supply

- irrigation
- thermoelectric power
- domestic
- industrial
- mining
- livestock aquaculture

Aquatic Community Health Primary Components · fish community health

Secondary Components

 invertebrates algae

Core indicators

Purpose

- 1. Develop a model evaluation framework
- 2. Evaluate existing National-scale or Regional-scale watershed models of the contiguous USA
- 3. Models:

Hydrology	Water Quality
NAM (SWAT+)	NAM
NHMv1.0 (PRMS)	Dynamic SPARROW of Illinois River
NWMv2.1 (WRF-HYDRO)	Watershed

- 4. Examine:
 - Differences in approach, model structure, inputs, strengths & weaknesses, possible sources of error
 - Comparisons of the model outputs at:
 - 1. Water balance at HUC 12 framework
 - 2. Observational gages

National Hydrological Model (NHM)

- Developed by USGS
- Based on the Precipitation-Runoff Modeling System (PRMS)
- Focuses only on the hydrologic cycle
- Natural flows only
 - no reservoirs, diversions, irrigation, etc.
- Inputs/outputs in English units

National Water Model (NWM)

WRF-Hydro Physics Components – Output Variables

- Developed by National Oceanic and Atmospheric Administration (NOAA) National Center for Atmospheric Research (NCAR) ٠
- Based on Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro)
- **Open Source** ۲
- Hydrology model; flooding

Subsurface

Flow

Routing

Modules

System

Column

Land

Surface

Modules

Conservative regridding and downscaling tools

Integrated Hydrological Models

Overland &

Channel

Flow

Routing

Modules

Water

Management Modules

Mass Balance Modeling

Target = Flux out = Flux in + ($x \theta_{D}$ Delivery) – θ_{1} Instream Decay

National Agroecosystems Model (NAM)

- Developed by USDA/ TX A&M
- Based on SWAT+
- Hydrology and water quality model
- still in development/undergoing calibration – results are preliminary

Study Area: Illinois River Watershed

- 4,920 km² (44% state of IL)
- 925 HUC12's
- 19 HUC8s
- 10 Locks and dams (7 on IL River)
- 1,303 km of levees
- Change in elevation of 578 ft (176 m) between Lake Michigan and the Mississippi River
- Urbanized in the area around Chicago
- Corn and soybeans downstate

Study Area: Illinois River Watershed

Tile Drainage (AgTile-US)

SSURGO soils

Land use - NLCD2021

Spatial framework summary \rightarrow translate to HUC12s

	NAM	NHMv1.0	NWMv2.1	SPARROW
Cell resolution	Ag Field boundaries. Cell size variable	HRUs from ¹ National Geospatial Fabric v1.1	NWM hydrofabric 1 km surface grid 250m stream routing grid	Catchments based on NHD+ streams ~2 km ²
HUC12 dataset	⁴ Modified 2015 WBD HUC12	Recompiled by spatial weighting to HUC12s (^{2,3} NHDPlusV2 snapshot from 10-26-202)	Recompiled by spatial weighting to HUC12s (NHDPlusV2)	Catchments compiled to the nearest HUC12
Number of HUCs	925	925	925/917*	918**
Model run timestep	Daily	Daily	Hourly	Seasonal
	*Ctroopef	bacaflow, and surface runoff is evoluted from th	he NIM/Nave a due to the lack of flow directions of th	a flowlings in 8 LULCass

*Streamflow, baseflow, and surface runoff is excluded from the NWMv2.1 due to the lack of flow directions of the flowlines in 8 HUC12s. **Compilation of flowlines to HUC12s in the SPARROW model lacked flowlines in 7 HUC12s.

Model Inputs

	NAM (SWAT+)	NHM (PRMS)	NWM (WRFHYDRO)	SPARROW
DEM	X	Х	X	Х
Soils	X	X	X	If significant
Hydrography	X	X	X	Х
Weather/Climate	X	X	X	If significant
Point Sources (location, outflow, loading)	X	X	X	X
Atmospheric deposition data	X			If significant
Tile drainage extent and depth	X			If significant
Septic extent, type, depth	Optional			If significant
Land use/land management	X	Х	X	X
CAFO	X			
Wetlands, pond	X			If significant
Reservoirs, canals	X		X	X
Water use: irrigation, water transfer	X	Х		If significant
Bathymetry	X		X	
Surficial geology	Optional			If significant
Geology WQ	Optional			

Model Inputs

	NAM	NHMv1.0	NWMv2.1	SPARROW
Climate dataset	Modified GHCN; PRISM in western states Daily	Daymet version 3 1km resolution Daily	AORC 1km resolution hourly	NCEI nClimGrid 48.28 km resolution daily
Streams	NHDPlus Version 2	NHDPlus Version 1.0	NHDPlus Version 2 Medium Resolution	NHDPlus Version 2 Medium Resolution
Landuse	CDL 2012; Management from 2014, 2015, and 2016 CDLs	NLCD 2001	NLCD 2016	NLCD linear interpolation on a quarterly basis between the 5-year data.
Soils	gSSURGO	SSURGO	STATSGO	SSURGO and STATSGO

Model Algorithms

	NAM	NHMv1.0	NWM∨2.1	SPARROW
Surface runoff	SCS Curve number	nonlinear variable-source- area method allowing for cascading flow	fully-unsteady, explicit, finite- difference, diffusive wave formulation like that of Julien et al. (1995) and Ogden et al. (1997).	Calculated from a Monthly Water Balance Model (McCabe and Wolock, 2011)
ET	Hargreaves PET	Jensen-Haise PET	Penman PET	
Snow processes	Snowmelt is controlled by a temperature index method. Snowpack is based on changes in accumulation	depletion processes by using an energy-budget approach	a multi-layer snow pack with liquid water storage and melt/refreeze capability and a snow-interception model describing loading/unloading, melt/refreeze capability, and sublimation of canopy- intercepted snow	
Canopy interception	function of canopy storage and is normalized by the maximum plant leaf area index (LAI)	Computes volume of intercepted precipitation, evaporation from intercepted precipitation, and throughfall that reaches the soil or snowpack	a two-stream radiation transfer approach along with shading effects necessary to achieve proper surface energy and water transfer processes including under- canopy snow processes	

Model Algorithms continued

	NAM	NHMv1.0	NWMv2.1	
Streamflow routing	Muskingum	Muskingum–Mann	Muskingum-Cunge	
Baseflow/ groundwater	Baseflow occurs if groundwater storage exceeds a storage threshold	Sums inflow to and outflow from groundwater reservoirs; outflow can be routed to downslope groundwater reservoirs and stream segments	non-linear, conceptual baseflow bucket model Boussinesq Approximation - Simple exponential decay	
Soil Zone	Kinematic storage model is in each soil layer. Accounts for variation in conductivity, slope, and soil water content	Computes inflows to and outflows from soil zone of each HRU and includes inflows from infiltration, groundwater, and upslope HRUs, and outflows to gravity drainage, interflow, and surface runoff to downslope HRUs	Boussinesq approximation effective 2-dimensional calculation of saturated subsurface lateral transport.	
Reservoirs	¹ Generalized methods for (i) reservoir capacity; (ii) reservoir release; (iii) climate conditions; (iv) reservoir storage and release.		passive storage and releases from waterbodies – no active management	

Hydrology Calibration Procedure

	NAM	NHMv1.0	NWMv2.1
Calibration POR	2000 to 2013	odd water years from 1981 to 2010	water years 2008 to 2013
Validation POR		even water years from 1982 to 2010	water years 2014 to 2016
Calibration points	 Water yield @ HUC8s ~150 gages for SS, TN, and TP 	 Water balance components Statistically generated 7,265 headwater watersheds (DA < 3,000 km²) observed gaged streamflow at 1,417 stream gage 	a subset of 14 soil, vegetation, and baseflow parameters to streamflow in 1,378 gaged, predominantly natural flow basins.
Calibration method	 Soft calibration: water balance components, crop yield, flow duration curves Dynamically Dimensioned Search Algorithm 	Uses a multiple objective, stepwise approach to identify an optimal parameter set that balances water budgets and streamflow	Dynamically Dimensioned Search algorithm to optimize parameters to a weighted NSE of hourly streamflow (mean of the standard NSE and log-transformed NSE).

Water Quality Inputs

Atmospheric deposition	National Atmospheric Deposition Program				
Point Sources	2002 – (USGS) Maupin and Ivahnenko, 2011* 2012 – (USGS) Skinner and Maupin, 2019 Compiled from U.S. Environmental Protection Agency Integrated Compliance Information System (ICIS) and Permit Compliance System (PCS) databases	2018 – (USGS) Skinner et al. 2024 (<i>in prep</i>) Compiled from U.S. Environmental Protection Agency Integrated Compliance Information System (ICIS) and Permit Compliance System (PCS) databases			
Fertilizer application - quantity	US Agricultural Census fertilizer application data from 2012	 Falcone, J. 2020. Estimates of County-Level Nitrogen and Phosphorus from Fertilizer and Manure from 1950 through 2017 in the Conterminous United States, USGS Report. 			
Manure production	2012 US Agricultural Census at HUC6 Gollehon et al. 2016	 Sekellick, A.J. and Sherr, C.E., 2024, Nitrogen and phosphorus inputs from fertilizer and manure in the Continental United States, 2002-2012: U.S. Geological Survey data. 			
Fertilizer application - timing	management templates using dates from White et al. 2016	seasonal application based on monthly estimation of nitrate emissions from Community Multiscale Air Quality modeling			
Geologic parent material		Background release from natural soils (Robertson and Saad, 2019)			

Model evaluation statistics computed for Hydrology (at USGS gages)

- 1. Nash-Sutcliffe (NSE)
- 2. Percent bias (PBIAS)
- 3. Kling-Gupta Efficiency (KGE)
- 4. Log NSE
- 5. Mean Squared Error (MSE)
- 6. Root Mean square error (RMSE)
- 7. Pearson Correlation coefficient
- 8. Spearman Correlation coefficient
- 9. Ratio of standard deviation
- 10. PBIAS in flow duration curve mid-slope segment
- 11. PBIAS in flow duration curve high-segment volume
- 12. PBIAS in flow duration curve low-segment volume

Preliminary Information – Subject to Revision. Not for Citation or Distribution.

Model Results

HUC12 Water Balance Components

Comparison of Model Output: Water Balance Components at HUC12's

	NAM	NHM	NWM	
Definition	(SWAT+) in mm	(PRMS) in inches	(WRFHydro) in mm	
precipitation	Precip	Ppt	Precip	
actual evapotranspiration	et	Aet	ET	
Streamflow	flo_out (m ³ /s) in channel_sd_mon.txt	lateral_flow	Streamflow	Statistics
Surface runoff	surq_gen	Sroff	SurfRunoff	a. Maximums
Flow from the groundwater				b. Minimums
reservoir to the stream network				c Modians
per unit area	flo in aquifer.txt	gwres_flow	Baseflow	C. IVIEUIAIIS
average of water held in soil				d. Quantiles
matrix	sw_ave		SoilMois_avg	a. [10.25.50.75.90]
change of water held in soil				
matrix	sw_final- sw_init		SoilMois_delta	e. Standard deviation
interflow	Latq	ssres_flow		f. Coefficient of variation
average snow water content	Snopack	Snowpack_water_equivalent	SWE_avg	g Skew
change in snow water content	sno_final-sno_init		SWE_delta	5. Skew
recharge	Rchrg in aquifer.txt	Recharge	Recharge	
GW storage	Stor in aquifer.txt	change_in_gw_storage		

tion

by WY

≥USGS

NAM HUC12 maps: Surface Runoff MHN

NAM surface runoff to the stream network WY 2000 to 2016

HUC12 maps - Seasonal Average PrecipitationNAMNHMNWM

23

HUC12 maps – Seasonal Average Recharge NAM NHM NWM

24

Future Water Quality Comparisons— Preliminary WQ SPARROW results

Predicted Incremental Downstream

Predicted Total Accumulated TP load, kg

Still waiting for calibrated NAM results...

≥USGS

<u>Summary – Strengths of each Approach</u>

NAM (SWAT+)	NHMv1.0	NWMv2.1	SPARROW (Illinois River dynamic)
Q and WQ model	Q model	Q model; flooding	WQ regression model
Highest spatial HRU resolution		higher resolution stream network; spatially-distributed modeling	
Daily timestep	Daily timestep	Subdaily time step	Seasonal timestep
	Low computational time		
Multiple approaches for reservoir management available	No reservoir management	Simplistic reservoir operations	Hydrology w/ water management is an input
Anthropogenic management, tile drains, structural BMPs	Natural flows model		good for source attribution of nutrients

The SECURE Water Act tasked the USGS with assessing water availability - quantity and quality of water for both human and aquatic ecosystem needs

Questions?

kmerriman@usgs.gov

Help explain national patterns

Projected Outcomes:

- 1. Document strengths/weaknesses 4. for all models
- 2. Contrast approaches
 - Find similar areas of strengths and weaknesses; identify the trade-offs of the modeling approaches
 - <u>Compare Model structure</u>

- Compare model abilities/functionality
- 5. Compare model input/outputs
- 6. Possible sources of error for all models

	NAM	NHM	NWM	SPARROW
Timestep	Daily	Daily	Hourly	Seasonal
Runoff	Computed with CN equation	nonlinear variable- source-area method	fully-unsteady, explicit, finite- difference, diffusive wave	Not computed
Nutrients	Calculates nutrient species	Not currently computed	Not currently computed	Calculates TN and TP

28

Model Structure – HUC12's!

Dashes = NAM modified HUC12s Based on 2015 WBD

Grey = SPARROW catchments, applied to nearest HUC12

		100 C	J -
	Missir	ng from	<u> </u>
			~
HUC12 Name	SPARROW	100010102.1	- h
071200010207 Clear Lake	х	х	32
071200010301 Lateral Number Five	х	х	7
071200010303 Armey Ditch	х	х	
071200010401 Breckenridge Ditch	х	х	07120001
071200010404 Salisbury Ditch	х	х	
071200010705 Laramore Ditch-Kankakee Rive	r x		Dapa
071200011102 Wentworth Ditch-Knight Ditch	х	х	
071200011201 Gregory Ditch-Mud Lake Ditch	х	х	2
071200060401 North Lake	х	х	1
COUNT	ç) 8	200
		071200018	~
		2	

Dark blue = NHM/NWM, spatially weighted to WBD from June 2021

Summary of statistics

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

.

0

KGE

Water Year basis NAN	1_12_28_22 I	NHMv1.0	NWMv2.1
Statistic grouping	Count of st	atistic in ra	inge
NSE ≤ 0	28	24	26
0 < NSE ≤ 0.5	11	12	4
0.50 < NSE ≤ 0.65	7	13	2
0.65 < NSE ≤ 0.75	8	10	5
0.75 < NSE ≤ 1.00	12	6	33
KGE < -0.41	8	1	2
0 < KGE ≤ -0.41	7	3	3
0 < KGE ≤ 0.5	14	20	15
0.50 < KGE ≤ 0.75	25	42	22
0.75 < KGE ≤ 1.00	20	8	32
PBIAS ≥ ±25	44	42	27
$\pm 15 < PBIAS \le \pm 25$	13	19	9
$\pm 10 < PBIAS \le \pm 15$	7	13	9
$PBIAS \le \pm 10\%$	13	10	29

Project Deliverables

Code release to GitHub

Journal article

Project Deliverables

- Model outputs
 - NAM
 - NHM Goodling, et al. 2022 <u>https://doi.org/10.5066/P9TYOJKN</u>
 - NWM
 - SPARROW Schmadel et al. and data release forthcoming
- Calculated statistics at USGS gages
- Calculated statistics at HUC12s

Discussion Points

Timeline for sharing of SWAT+ results

- Calibration status?
- SWAT+ publication/data release availability for publication citation purposes?
- Model version control (code and application)
 - What will documented and published?
 - USGS is required to publish at minimum model results that will be cited in this effort

- Paper outline
 - Compare inputs /output
 - Contrast approaches
 - Document strength and weaknesses of national models
 - Differences in model structure
 - Contrast results and determine how best to use the different models and what questions/problems can be addressed with the different approaches
 - Possible sources of error
- Future Funding/ work
 - Goal is to have a publication this FY
 - Can frame paper that these are not final results

NAM vs. NHM vs. NWM

Hydrology comparison schematics

Preliminary Information – Subject to Revision. Not for Citation or Distribution.

NAM vs. SPARROW

Water quality comparison schematics

Preliminary Information – Subject to Revision. Not for Citation or Distribution.

Comparison of Models: Water Quality Components

Definition	NAM (SWAT+)	SPARROW				
Input LOADs calibration						
Output loads	LOADEST	FLUXMASTER & WRTDS				
(TN & TP)						
Rank of output loads						
Model timestep	model runs on daily timestep	Seasonal				
Model evaluation timestep	Daily, monthly, Seasonal, WY, Annual	Seasonal, Annual				
Model evaluation statistics	Same as gage statistics					
	Statistics @ HUC12s/ HUC8s on seasonal and WY basis					

Statistics

- a. Maximums
- b. Minimums
- c. Medians
- d. Quantiles [10,25,50,75,90]
- e. Standard deviation
- f. Coefficient of variation
- g. Skew

Water Quality Calibration Procedure

	NAM	SPARROW
POR		
Validation POR		
Calibration points		
Calibration method		

Model Calibration Data

	NHM	NWM	NAM	
	(PRMS)	(WRFHYDRO)	(SWAT+)	SPARROW
	Calibrat	ion Data		
Streamflow	X	Х	X	Х
Crop yield			soft	
WQ Concentrations and loads			X	Х
Water levels (GW/SW)		Х		
Sewer, tile, urban drain flows			tile	

Summary

- Strengths of each approach
- NAM: HRU spatial resolution is higher, reservoirs, diversions, anthropogenic management, structural BMPs, only Q and WQ
- NHM: low computational time, allows lots of exploration, no water management (natural systems only)
- NWM: subdaily timestep, stream network higher resolution, simplistic reservoir management
- SPARROW: high spatial resolution, good for source attribution of nutrients, hydrology w/ water management incorporated is an input

Hydrographs on the Illinois River Model Results

Preliminary Information – Subject to Revision. Not for Citation or Distribution.

USGS	USGS Site no.	model	•:	ep Drain area (km2)	On water year basis								
Site name			timestep		Q Avg (cms)	Q Max (cms)	Q Min (cms)	Q Std (cms)	NSE	logNSE	PBIAS	RMSE	KGE
		OBS	WY	21,349.7	303.84	407.50	198.10	68.16					
ILLINOIS RIVER	055/3500	NWMv2.1			319.77	429.77	206.88	72.51	0.85	0.87	5.24	25.63	0.91
AT MARSEILLES, IL	03343300	NHMv1.0			202.30	295.64	135.83	46.15	-1.61	-2.42	-33.42	106.88	0.52
		NAM_12_28_22			15.44	24.69	5.99	6.57	-18.86	-183.25	-94.92	294.64	-0.31
	05558300	OBS	WY	35,074	433.34	587.07	235.68	112.83					
AT HENRY II		NWMv2.1			452.61	609.78	278.87	112.36	0.91	0.91	4.45	32.36	0.95
AI HENRI, IL		NHMv1.0			311.83	491.87	193.64	82.54	-0.49	-0.62	-28.04	133.72	0.59
		NAM_12_28_22			20.21	39.82	4.30	10.91	-14.08	-139.87	-95.34	425.03	-0.32
		OBS	WY	40.062.2	490.65	758.68	266.14	141.54					
ILLINOIS RIVER AT KINGSTON MINES, IL	05568500	NWMv2.1			507.79	700.75	309.40	131.13	0.92	0.92	3.49	38.72	0.91
	0000000	NHMv1.0		40,903.2	351.49	568.59	214.63	98.39	-0.27	-0.44	-28.36	154.77	0.57
		NAM_12_28_22			9.82	18.42	2.63	4.55	-12.21	-182.70	-98.00	499.06	-0.39

Evaluation Statistics at IL River sites WY basis

Comparisons of model outputs will be on a spatial, HUC12 scale and at select gages

USGS	USGS	model			Drain area	On water year basis								
Site name	Site no.		timestep	(km2)	Q Avg (cms)	Q Max (cms)	Q Min (cms)	Q Std (cms)	NSE	logNSE	PBIAS	RMSE	KGE	
DES PLAINES RIVER NEAR DES PLAINES, IL		OBS	WY	943.1	12.02	17.75	5.30	3.54						
	05529000	NWMv2.1			13.95	18.42	8.01	3.13	0.52	0.55	16.00	2.39	0.78	
		NHMv1.0			11.93	16.48	6.44	3.00	<mark>0.88</mark>	0.88	-0.73	1.17	0.84	
		NAM_12_28_22			8.44	13.03	3.33	2.85	-0.20	-0.42	-29.77	3.76	0.64	
	05542000	OBS	WY	1,165.6	11.86	19.86	3.82	5.14						
MAZON RIVER		NWMv2.1			10.19	17.10	3.76	4.54	0.85	0.87	-14.05	1.96	0.82	
NEAR COAL CITY, IL		NHMv1.0			9.63	17.61	4.27	3.51	0.42	0.55	-18.81	3.78	0.58	
		NAM_12_28_22			12.42	19.41	4.40	4.81	<mark>0.93</mark>	0.86	4.70	1.36	0.91	
		OBS			24.29	51.92	5.75	12.89						
SPOON RIVER AT	05560500	NWMv2.1		2 772 1	24.89	49.66	9.21	11.35	<mark>0.97</mark>	0.93	2.47	2.09	0.88	
LONDON MILLS, IL	03303300	NHMv1.0	VVI	2,773.1	12.74	28.46	3.45	7.44	-0.16	-0.75	-47.54	13.48	0.35	
		NAM_12_28_22			18.41	46.56	2.06	12.58	0.71	-0.06	-24.23	6.70	0.75	

		Forest in	Wetlands	Urban in	Agriculture
USGS		HUC12	in HUC12	HUC12	in HUC12
siteno	HUC12	(%)	(%)	(%)	(%)
05529000	071200040503	15.12	7.26	73.05	1.78
05542000	071200050503	14.99	3.77	9.64	65.55
05569500	071300051004	18.31	2.09	3.87	74.1

Selected sites for high model performance (sites with highest NSE for each model on WY basis)