International SWAT Conference July 2024- Strasbourg, France

Assessing climate change impacts on water footprint of crop production and crop yield: a case study of the Wu River basin, Taiwan

Guan-Zhou Lin, Li-Chi Chiang*

Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan

Increasing frequency of drought and flood under climate change

Water footprint of crop production in the world

Impact of water footprint under climate change: a case of India

Research goals

Water footprint

Calculate the blue, green, grey water footprint of crop production

Crop yield Simulate by SWAT

Climate change

Assess the impact of climate change

Adaption suggestion Provide the suggestion for climate

change adaption

Study area: Wu River basin

Located in central Taiwan, a crucial source of irrigation water for Taichung and Changhua counties Area: 2,026 km²

Annual total precipitation 2,092 mm Average annual flow : 115.83 m³/s

Paddy fields: 4% Drylands: 17% Orchard: 6% Forest: 51% Urban: 19%

Material and Method

Method: SWAT2012

Method: Water footprint (1/2)

Blue water footprint

E	Ę
Fe	¥.

Major source of irrigation: streamflow, ponds, groundwater, etc. Rainwater stored in the root zone of soil

Green water

footprint

Grey water footprint

The amount of fresh water needed to dilute pollutants to maintain water quality standards

The TWN water standard: suspended solids: 25 ppm, nitrate: 10ppm total phosphorus: 0.05ppm.

Method: Water footprint (2/2)

 $WF = WF_{blue} + WF_{green} + WF_{grey}$

WF: total water footprint of the crop (m³/ton) WF_{hlue} : blue water footprint of the crop (m³/ton) WF_{green} : green water footprint of the crop (m³/ton) WF_{grev}: grey water footprint of the crop (m³/ton) IR: irrigation water (m³) Y: crop yield (ton) A: cropping area (ha) *ET_{crop}*:crop evapotranspiration (mm) P_e :effective rainfall (mm) L: The diffuse pollution during the crop cultivation process (kg) C_{max}: the maximum diffuse pollution concentration acceptable in rivers (kg/m³) C_{nature}: the natural background output (kg/m³)

Method: Climate change scenarios

SWAT Calibration: Discharge

SWAT Calibration: Diffuse pollution

Spatial variations in **blue-green** water footprint

Subbasins 3, 5, 8, 14, 20, and 21 exhibit blue and green water consumption exceeding 61 million tons/year in baseline scenario.

нН VS

Most subbasins demonstrate marginal change in the range of blue and green water consumption.

Spatial variations in NO₃-N grey water footprint

- Subbasins 10, 16, 20, and 21 in the upstream regions, where sweet potatoes and oranges predominate, exhibit higher nitrate nitrogen grey water demand in baseline scenario.
- Substantial increase in nitrate nitrogen grey water demand in field within the middle and upper stream subbasins, surpassing 4 million tons/year in RCP8.5 scenario.

Spatial variations in TP grey water footprint

 Total phosphorus grey water demand in subbasins
5, 14, 16, 20, and 21, where agriculture predominantly involves sweet potatoes and oranges cultivation .

5

Significant increase in total phosphorus grey water demand in the middle and upper stream subwatersheds, especially in larger orchard cultivation areas .

Diffuse pollution and Crop yield under climate change

Comparison with world water footprints

	Сгор	Wu river	World					
			10 th percentile	20 th percentile	25 th percentile	50 th percentile	Average	
Blue-Green water footprint (m ³ /ton)	Rice	7456	599	859	952	1476	1486	
	Sweet potato	354	203	219	224	249	330	
	Orange	369	303	333	343	383	510	
NO3-N Grey water footprint (m ³ /ton)	Rice	145	71	129	162	215	187	
	Sweet potato	60	14	50	50	50	53	
	Orange	42	14	15	16	42	49	

(Mekonnen & Hoekstra, 2014)

The nitrate grey water footprint for each crop is nearly equal to the global average.

Paddy fields exceed the global average water footprint 5 times, primarily due to intensive irrigation practices in Taiwan.

Proposed solutions for cultivation adaptation

Crop conversion

Evaluate the crop conversion in the middle and upper subbasin.

Increase nutrient use efficiency

Assess the crop growth demand during the growth period.

Fertilizer application

Adjust the fertilizer application practices (e.g., timing, amount types)

Evaluate the impact ofclimate change

Identify the hotspots of variations under various climate change scenarios.

Conclusions

Variation in water footprints in Taiwan

- The water blue-green water footprint of paddy fields are approximately 5 times higher than other rice field regions in the world.
- Grey water footprint will surge by approximately 33% to 116% under climate change scenarios.

Impact of climate change in Taiwan

- Sweet potato and orange cultivation showed the most significant increase in nutrient export, potentially **surpassing 50%**.
- Crop yield are anticipated to decline by **18% to 45%**.

Cultivation adaptation is needed in the future

• For examples: Effective water resource management, strategic allocation, and conversion of crop types that consume less water and generate less nutrient exports.

Thank you for your attention

lchiang@ntu.edu.tw

For

